

Application Of Enterprise Identifiers (EID)
To Automated Information Systems

For Personnel

September 2002

Prepared For:

Mr. Bruce Haberkamp
ATTN: SAIS-IOE
107 Army Pentagon

Washington, DC 20310-0107

Prepared By:

Sam Chamberlain, Ph.D.
Army Research Laboratory

Aberdeen Proving Ground, MD 21005-5067

and

Francisco Loaiza, Ph.D.

Windsor Lin, Ph.D.
Institute for Defense Analyses

1801 N. Beauregard St.
Alexandria, VA 22311

This page left blank
intentionally

 2

TABLE OF CONTENTS
1. Introduction.. 6

2. Background – Progress Since the Logistics Study .. 6

2.1 A Short Review of Organization Identifiers and Hierarchical Structures 7

3. Lessons Learned Since The Logistics Study ... 10

3.1 Decoupling Enterprise Identifiers (EIDs) From Organization Identifiers (Org-IDs) 10

3.1.1 EID Server Architectures... 12

3.1.2 EID Seed Servers (ESS)... 14

3.1.3 EID Servers.. 15

3.1.4 EID Server Location Flexibility... 16

3.2 EIDs as Alternate Keys.. 19

3.3 Application Of The EID Concept To Reference Libraries .. 19

3.4 Data Ownership, Authoritative Sources, and Duplication... 21

3.5 User Access To EID Servers.. 23

3.6 Choice Of Optimal Taxonomies .. 23

3.7 Benefit To The Warfighter... 25

3.8 Benefits To Database Evolution And Managing Change .. 27

4. Personnel Ontology and Modeling Issues.. 28

4.1 Basic Entities in Battle Command System Models ... 28

4.2 Personnel Data in the Context of Battle Command Systems Data Models 29

4.2.1 Organization [ORG]... 29

4.2.2 Organization-Type [ORGT]... 30

4.2.3 Person [PERS]. .. 32

4.2.4 Person-Type [PERST] and Skill-Type [SKILLT] ... 32

4.2.5 Attributes for PERST and SKILLT ... 35

4.2.6 Modeling Options for Personnel Attributes... 38

4.2.7 Using EIDs to Add Flexibility to Associations.. 43

5. Recommendations and summary. .. 51

5.1 Recommendation 1: Incorporate EIDs into personnel automated
information systems as alternate keys.. 51

5.2 Recommendation 2: To facilitate interoperability, a special external function
called “Fetch-EID” should be included into the interfaces of personnel AIS’s
along with support for XML. ... 52

 3

5.3 Recommendation 3: EIDs should be implemented as 64-bit sequences,
or alternatively, as 16 characters using hexadecimal representation,
using a global EID prefix and a locally generated EID suffix. 52

5.4 Recommendation 4: An initial interface between administrative and
battle command systems for personnel data should be established via
the Army Organization Server (AOS). .. 53

5.5 Recommendation 5: PERSCOM should be the authoritative source
for Army person-type data maintained in the AOS. .. 54

5.6 Recommendation 6: To facilitate inter-service exchange, personnel data
in the AOS should be modeled using both bundled and generic attributes
similar to a meta-model. .. 54

Annex A: Analysis of Options for EID Implementations.. 57

 Summary .. 62

 I. Basic Concepts And Definitions... 67

 II. Technical Alternative Analysis .. 71

 4

LIST OF FIGURES

Figure 1: Tree Graph Definitions and Terms ... 8
Figure 2: Org-ID Servers Provide ORG-IDs For Organization Servers

That Maintain Force Structure Data ... 11
Figure 3: Original Scheme to Create EIDs from Org-IDs.. 12
Figure 4: EID Server Architecture ... 13
Figure 5: Structurally, EIDs Based Upon EID Seeds Are Identical

To Those Based Upon Org-IDs .. 13
Figure 6: EID Server Location Options.. 17
Figure 7: Extreme Case – Centralized.. 18
Figure 8: Extreme Case – Decentralized .. 18
Figure 9: Mixed Extreme One.. 18
Figure 10: Mixed Extreme Two ... 18
Figure 11: Suite of Servers that Contain Stationary Data .. 20
Figure 12: Arbitrary Plug and Play of References to Disparate Entities...................................... 26
Figure 13: Examples of Instances and their Associated Templates ... 29
Figure 14: ORGT and ORG Trees.. 31
Figure 15: PERST Used to Define Requirements for an ORGT.. 33
Figure 16: LC2IEDM Associations with Person-Type .. 33
Figure 17: Person-Type, Skill-Type, Org-Type, and Person Associations 34
Figure 18: Examples of Officer Classification Schemes.. 36
Figure 19: IDEF1X Representation of Aggregate Occupation Attribute..................................... 37
Figure 20: IDEF1X Representation of Decomposed Attributes... 40
Figure 21: Generic Attributes in Entity .. 41
Figure 22: Bundling Attributes into Entities .. 42
Figure 23: Generic Skill-Type With Bundled Person-Type... 43
Figure 24: Association Tables with Generic Attributes ... 44
Figure 25: Using a Single Entity for Generic Attributes.. 45
Figure 26: Bundled Attributes and Association Table ... 46
Figure 27: Bundled Skill-Types ... 47
Figure 28: Personnel Data Maintained at Resolutions Lower than Position................................ 48
Figure 29: LC2IEDM Establishment (Modified for EIDs) .. 49
Figure 30: Aggregate Personnel Information Accessed Via ORGT Associations....................... 50

 5

1. INTRODUCTION

This study presents an analysis of the ways in which enterprise identifiers (EID) can be exploited
to facilitate information exchange between automated information systems (AIS) that handle
personnel information. This study addresses several facets of this challenge, to include the
selection of modeling techniques that exploit the capabilities of EIDs to: (1) integrate
administrative AISs with battle command systems, (2) operate across military service and
coalition boundaries, and (3) provide simple maintenance of personnel type information within
an integrated Army Organization Server (AOS) that contains comprehensive force structure
details. During FY00, an Army Studies Program study was conducted on behalf of the Director
for Plans, Operations, and Logistics (BG H.A. Curry) of the U.S. Army Office of the Deputy
Chief of Staff for Logistics (ODCSLOG) that investigated the utility of using enterprise
identifiers to address issues encountered by the logistics community, and in particular, the
building of units “on-the-fly.”1 In the report, eight recommendations were presented. Since that
time (and during the performance of this study) new insights have emerged that have changed
some of the original implementation concepts of enterprise identifiers (EID) for battlefield and
business systems. This report describes those changes and provides recommendations for
applying EIDs to personnel systems.

2. BACKGROUND – PROGRESS SINCE THE LOGISTICS STUDY

During this study, experts from the personnel automation community were consulted and dialog
ensued concerning the use of EIDs in current and planned personnel related systems. The
experts were:

Mr. Smokey Bresser – Architecture & Information Assurance Office, ODCSPER.
Mr. Paul Oestreich – PERSCOM, PERSINSD TAPC-PSA-SA
Ms. Peggy Mercer – PERSCOM, PERSINSD TAPC-PSA-SA
Ms. Chris Lundeen – PERSCOM, PERSINSD TAPC-PSA-SA
LTC Girard Evans – PERSCOM, PM-ITAPDB
Mr. Michael Monteleone – Joint Requirements & Integration Office, DUSD-PI, USD-P&R.

Of particular interest are the interactions between administrative systems, which are used in a
fixed or non-deployed environment, and battlefield systems that are mobile and may be used in
combat. Several schemas are being developed concurrently for the administrative environment.
The ultimate goal is for all personnel systems to migrate to a Department of Defense (DoD)
standard, and this is one of the objectives of the Defense Integrated Military Human Resources
System (DIMHRS) program.2 In discussions with Mr. Montelone,3 the use of commercial
standards and products will be a key element of DIMHRS. This is also true for the Integrated
Total Army Personnel Database (ITAPDB) being developed by the US Total Army Personnel

1 Enterprise Identifiers For Logistics: An Approach in Support of Army Transformation Initiatives, December 2000.

See: http://arch-odisc4.army.mil/data_mgt/Org_ID_Task_Docs.asp
2 DIMHRS - See: http://www.mpm.osd.mil/dimhrs.htm.
3 Meeting held 1 August 2001 in Arlington, VA.

 6

http://arch-odisc4.army.mil/data_mgt/Org_ID_Task_Docs.asp
http://www.mpm.osd.mil/dimhrs.htm

Command (PERSCOM)4 to consolidate personnel data from Active Army, Army Reserve, Army
National Guard, and Army Civilian Personnel databases. Ultimately, ITAPDB will serve as the
data source for migrating data to the DIMHRS.

The Army Battle Command System (ABCS) is a primary example of a combat system that
includes personnel data.5 During battle, it will be the primary source of basic personnel data for
commanders and their staffs. ABCS depends upon the Joint Common Database (JCDB)6 for
storing and maintaining information. The details of how personnel data will migrate between
administrative systems with a commercial basis and battlefield systems are still being developed.
However, a major task will be the routine maintenance and update of information between the
systems as conditions change. To accomplish this, it will be necessary to link data that resides in
several different systems, with different schemas, based upon different perspectives. This will
require data to be explicitly associated at the entity level of detail or higher. Enterprise
identifiers significantly facilitate this capability.

2.1 A Short Review of Organization Identifiers and Hierarchical Structures

EIDs evolved from a study of organization identifiers (Org-ID).7 To understand EIDs, it is
beneficial to understand the concepts behind Org-IDs. From a personnel perspective, the main
concept in this section is that billets are simply a type of organization, and therefore, should have
semantics consistent with other force structure properties. Although the current study suggests
that EIDs should be managed independent of the force structure community, the close
association between the personnel and force structure communities requires a basic
understanding of the concepts behind formally representing hierarchical structures when applied
to military organizations.

To explicitly represent force structure, tree graphs can be utilized. Although numerous informal
interactions are common among military organizations, due to the basic principles of military
command, military organizations are conveniently represented via hierarchical organization
charts that describe the aggregation and composition of clusters of people and equipment. To
formalize the process of building and rapidly modifying organization charts, they can be
represented in terms of graph theory. A graph is composed of a set of nodes connected by a set
of links (i.e., called vertices {V} and edges {E}, respectively, in mathematical vernacular). A
tree is a special type of graph that is fully connected (i.e., every node is linked to at least one
other node) and there are no cycles (i.e., when links are traversed, only one path exists between
any two nodes). Normally, one node is selected as the “beginning” of the tree and is named the
root node. Figure 1 summarizes several tree graph terms and illustrates how they are easily
exploited to denote hierarchical organization charts.

4 ITAPDB: See: http://www-perscom.army.mil/persinsd/ITAPDB/ITAPDB - Home Page.htm and

https://itapdb.hoffman.army.mil/homesite/Default.htm
5 In particular, the Combat Service Support Control System (CSSCS), a sub-system of ABCS;

See http://www.lee.army.mil/csscs/documentation.htm
6 The JCDB schema is the JCDBDM: Joint Common Database Data Model;

See: https://www.kc.us.army.mil/homepeoc3s.nsf/Home?OpenFrameSet
7 Chamberlain, S., “Default Operational Representations of Military Organizations,” Army Research Laboratory

Technical Report: ARL-TR-2172; February 2000. See: http://www.arl.army.mil/~wildman/PAPERS/tr2172.html

 7

http://www-perscom.army.mil/persinsd/ITAPDB/ITAPDB - Home Page.htm
https://itapdb.hoffman.army.mil/homesite/Default.htm
http://www.lee.army.mil/csscs/documentation.htm
https://www.kc.us.army.mil/homepeoc3s.nsf/Home?OpenFrameSet
http://www.arl.army.mil/~wildman/PAPERS/tr2172.html

Graph G:

CB

A

D

A

B
C
D

CB

A

D

NODES (or vertices): set V = { A, B, C, D, E, F }
LINKS (edges): set E = { (A,B), (A,C), (A,D), (C,E), C,F) }
GRAPH: collection of vertices and edges: G(V,E)
A Tree structure is a “connected” graph with no “cycles,”

i.e., every node has at least one link to another node
and only one path exists between any two nodes.

Via a link, a node can be a parent or a child of another node.
A node without a child is called a terminal or leaf node

(e.g., the nodes at the bottom of the tree: B, D, E, and F)
A node with children is an non-terminal or internal node

(e.g., A and C);
The root node is a special internal node with no parent (e.g., A).

Organization Charts are Trees (w/ boxes instead of circles)
(Often the name of the tree is inherited from the name of the root node - e.g., A):

B C D

A
Parent

Child

E F

Figure 1: Tree Graph Definitions and Terms

There are many informal definitions of organization (or unit8). For example:

Webster’s: organization—an administrative and functional structure9, or

Joint Services Dictionary: unit (Department of Defense [DoD], North Atlantic Treaty
Organization [NATO]) — 1. Any military element whose structure is prescribed by
competent authority, … specifically, part of an organization10,

Terms like “element” or “structure” are ambiguous in isolation; therefore, a more formal
approach is required. Using the tree graph formalism, an organization can be defined as a node
of a tree (e.g., node A in Figure 1), while the term “organization-association” can refer to a link
of a tree (e.g., the line connecting nodes A and C, denoted by (A,C), in Figure 1). An
organization chart is a graph composed of a set of nodes and a set of links, or in other words, a
set of organizations and a set of organization-associations. In Figure 1, the set of organizations is
{A, B, C, D, E} and the set of organization-association is { (A,B), (A,C), (A,D), (C,E), (C,F) }.
Clearly, a set of organizations can be linked together in many ways, or in military terms, they can
be task organized.

8 Informally, the terms organization and unit are often synonymous.
9 Webster’s 10th Collegiate Dictionary
10 See: http://www.dtic.mil/doctrine/jel/doddict

 8

http://www.dtic.mil/doctrine/jel/doddict

The goal of the force developer is to provide a common set of default organizations and
organization-associations from which any other task-organized structure can be easily
constructed. This default structure can be named the “default operational force structure”
(DOFS) and can be maintained in concert with TOE and MTOE11 data by the force development
community in a database called an Army Organization Server (AOS). The AOS would be the
authoritative source for force structure data and must support downloading of force structure data
by tactical and administrative users across the joint services, and when authorized, by our
coalition partners.

There are two key characteristics of a DOFS that greatly enhance military capabilities. First, it is
high resolution and extends down to the billet level. In general terms, a billet organization is no
different from a battalion organization; they are simple nodes of a tree graph that describe the
aggregation and composition of clusters of people, equipment, and other organizations. A billet
is the special case where the “cluster” is a single person. This means that billets are at the
bottom of the organization tree (also called a leaf or terminal node). They may not have sub-
organizations, that is, they are not “composed–of” any other organizations, so they identify the
beginning of the aggregation process. Other than that, they are treated the same as any other
organization. Billet resolution allows one to task organize (if and when required) down to the
billet level. It also provides an ideal point to interface personnel and force structure data because
they exist together in a one-to-one relationship.

The second characteristic of a DOFS is that it contains the default operational, not
administrative, structure (unless, of course, the administrative structure is the operational
structure). This means that all the small elements required to fight or deploy are included in the
structure. This includes any special sections, elements, squads, teams, and crews12. For
example, a tank crew is composed of four billet organizations: a tank commander, a gunner, a
loader, and a driver. A basic rule is that platforms never fight alone; so two tank crews always
work together to make a tank section. These organizations do not appear in current TOEs or
MTOEs, one has to reference Field Manuals (FM) to discover this operational structure. Having
the operational organization explicitly identified in the DOFS means that these organizations
exist officially and are available for task organizing. If this is done properly, it should be a rare
event to have to create new organizations while task organizing.13

To simplify the construction and dissemination of force structure data, there must be a simple
way to uniquely identify the organizations (nodes) of the tree. This was the impetus for the
organization identifier, or Org-ID, initiative. Org-IDs are to be enterprise-wide, unique values.
They are surrogate keys meaning that they have no inherent meaning; or in other words, no
information can be inferred about the data they identify from the key.14 A surrogate identifier is

11 TOE – Table of Organization and Equipment, MTOE – Modified TOE; the basic Army force structure documents.
12 Conceptually, crews can also be considered equivalent to platforms or systems.
13 For more information on DOFS, see ARL-TR-2172 (footnote 7) where the DOFS was previous called the default

operational organization (DOO).
14 Technically, a surrogate key is a primary key that has no inherent meaning, is composed of only a single

attribute (database column), and whose value is not derived from any other entity.
See: Lonigro, Mike, The Case for the Surrogate Key; http://www.dbpd.com/vault/9805xtra.htm.

 9

http://www.dbpd.com/vault/9805xtra.htm

not necessarily meant for human use. But users never need to know that they exist. However,
the database management system (DBMS) and application programmers can use them
extensively to greatly enhance performance and flexibility.

Originally, it was conceived that the force development community would assign each
organization a unique 32-bit value, called an organization identifier, or Org-ID, that would stay
associated with the organization for its life. Further, when created, every organization would
have a default parent organization explicitly identified. This means that every organization
(except the root node) would have a default position within a large Army DOFS. Thus, one
could begin at any billet and iteratively follow the links to the parent organizations in a default
path to the root node, for example, the Department of the Army node.

This concept naturally evolved for all data, and the specific notion of Org-IDs evolved into the
general notion of EIDs for all data. With this background in mind, the following discussion
describes major changes to the EID implementation approach as a result of this study.

3. LESSONS LEARNED SINCE THE LOGISTICS STUDY

3.1 Decoupling Enterprise Identifiers (EIDs) From Organization Identifiers (Org-IDs)

Pursuant to an Army study on the applicability of EIDs to logistics15, a simple but significant
modification was made to the recommended implementation approach for allocating EIDs.16
The original concept of EIDs arose from the operational realities of how the armed forces
manage their resources, namely, through a force structure centric perspective. This is evident
from the numerous data models and simulation models associated with battle command systems
and studies. In other words, most of the data collected, maintained and produced by operational
military units use force structure as a central concept to produce a unified view of the enterprise.
Ultimately, somehow everything is related to force structure, whether one is building an
operational plan (OPLAN), performing targeting tasks, planning re-supply operations, or
executing installation management. The basic questions of who reports to whom, who owns
what, and who is responsible for what permeates the enterprise information and its associations.

A popular set of models17 is based upon the original Generic Hub data model18. These models
have a core set of five battlefield entities: ORGANIZATION, PERSON, MATERIEL, FACILITY, and

15 See Footnote 1.
16 This was “Recommendation 8: The Materiel server should utilize an enterprise key scheme based upon DOOs.”
17 These models include:

C2 Core DM: Command & Control (C2) Core Data Model;
 see: http://www-datadmn.itsi.disa.mil/ddm.html
CADM: C4ISR Architecture Data Model;
 see http://www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/index.htm
AICDM: Army Integrated Core Data Model;
LC2IEDM: Land C2 Information Exchange Data Model, Edition 2.0, ADatP-32, 31 Mar 2000, and
ARCADM: Army CADM
 see: https://arch-odisc4.army.mil/admg/html/datamodels.asp (CADM also accessible via this site)
JCDBDM: See Footnote 6.

 10

http://www-datadmn.itsi.disa.mil/ddm.html
http://www.c3i.osd.mil/org/cio/i3/AWG_Digital_Library/index.htm
https://arch-odisc4.army.mil/admg/html/datamodels.asp

FEATURE; ORGANIZATION is the basic entity for force structure. Data pertaining to it and all
other battlefield objects are naturally associated, but it is the ORGANIZATION entity, be it a
military combat unit or an administrative headquarters that forms the basic structure to which all
other entities are ultimately associated.

This perspective induced the association of enterprise identifiers with organization identifiers.
The original approach built an EID from an Org-ID. The idea was simple; an organization
would receive an Org-ID from its force developer. Then, the organization could build EIDs
using its Org-ID as a prefix. This process is illustrated in Figure 2.

An advantage of this approach is that an organization can use the Org-IDs under its control to tag
all other battlefield data items under their purview. Because no two organizations participating
in the scheme would ever receive the same Org-ID, the Org-ID could be used as a prefix to
generate many other unique values. Consequently, EIDs were defined as a sequence of 64 bits
created by concatenating a centrally apportioned, 32-bit Org-ID with a second 32 bit sequence
generated locally. The resulting 64 bit EIDs would be guaranteed to be unique across the
enterprise. This is illustrated in Figure 3.

Users / Units Receive Force Structure Data with Org-IDsUsers / Units Receive Force Structure Data with Org-IDs

Org-ID Server(s):
• Pass Out Org-IDs
• Tracks to whom
• Tracks Status

(e.g., active or dormant)

Organization Server(s):
• Contain Organization Data

(Default Operational Organizations)
• Controlled by Server Owner
• May Return Unused Org-IDs

to Org-ID Server

Central RepositoryCentral Repository

Force DevelopersForce Developers

A

. . .NAVY USAF ETC.

B

CConsistency

Org-ID Request Return Org-ID(s)

. . .

ARMY

1 2 7 N3 4 5 6

Figure 2: Org-ID Servers Provide ORG-IDs For Organization Servers
That Maintain Force Structure Data

18 Army Tactical Command & Control Information System (ATCCIS) Generic Hub 4 data model,

 ADatP-5 Draft 1.0, 1 Oct 1999; The predecessor of the LC2IEDM.
 See http://www.euronet.nl/users/atccis/index.html for historical information.

 11

http://www.euronet.nl/users/atccis/index.html

So … a second (four byte) number that is controlled by an EID server (and provides another

4.29 billion unique entities) can be combined with the Org-ID to provide a new, bigger
unique number.

An enterprise identifier to uniquely identify any item in any database can be composed by combining
unique identifiers.

First, a four byte (32 bit long) “organizational identifier,” or Org-ID, is provided that
supports 232, or 4.29 billion (i.e., 4.29 X 109), unique organizations.

An EID server obtains its identity from the organization it represents.

32.1 321

64 Bit (8 Byte) EID

32 Bit (4 Byte) Org-ID 32 Bits (4 Bytes) Local Sequence

Figure 3: Original Scheme to Create EIDs from Org-IDs

Pursuant to the logistics study, it became apparent that the requirement to first allocate Org-IDs
to military units to implement EIDs added unnecessary complexity and delay. Further, it limited
the number of EIDs per organization to a fixed number (4.3 billion). This may be too huge for
many organizations, and too small for others. The original process requires that an organization
receive an Org-ID from the force development community before it can create data using EIDs.
As MTOE/TOEs get updated annually, Org-IDs may change further complicating the process.
Although it is expected that battle command processes and data models will continue to be
organization-centric, for simplicity and functionality reasons, it is advantageous to develop a
ubiquitous battlefield object identification system that is independent of the force development
process. In other words, there are no technical reasons why globally unique, 64-bit identifiers
(i.e., an EID) should be dependent on the force structure process.

3.1.1 EID Server Architectures

Separating Org-IDs from the EID generation process greatly simplifies the task of EID
distribution. There are numerous techniques that can be employed to allocate (32) bit sequences
that are guaranteed not to have been distributed to anyone else. The study team has explored
various implementation strategies based on the concept of having one or more EID “seed
servers” (ESS). After subscribing to the ESS, members can receive EID prefixes and then
proceed to build EID servers (ES) to locally generate 64-bit sequences for tagging records,
objects, and other data. Figure 4 illustrates an architecture to accomplish this task.19

The architecture includes three strata: EID users (on the right), EID servers (in the middle), and
EID seed servers (on the left). Any time data is created, it is uniquely tagged with an EID. This
is accomplished by obtaining an EID from an EID Server (ES). An ES is any computer program
that provides EIDs to requestors. As illustrated in Figure 4 and Figure 5, an ES creates 64-bit

19 S. Chamberlain, “An Enterprise Identifier Strategy for Global Naming Across Arbitrary C4I Systems,”

Proceedings of the 6th International Command & Control Research & Technology Symposium, USNA,
Annapolis, MD, 19-21 Jun 2001; Presented 19 June. See: http://www.arl.army.mil/~wildman/PAPERS/6thc2rt.html,
or http://www.dodccrp.org/6thICCRTS/Cd/Tracks/Papers/Track2/059_tr2.pdf.

 12

http://www.arl.army.mil/~wildman/PAPERS/6thc2rt.html
http://www.dodccrp.org/6thICCRTS/Cd/Tracks/Papers/Track2/059_tr2.pdf

A

Virtual

w/ 4.3 Billion Seeds

Up to 4.3 Billion
EID Servers (ES)

ES N

ES 6

ES 5

ES 4

ES 3

ES 2

ES 1
Each EID Server

Can Provide
4.3 Billion EIDs

EID
SEED

DB A

30A9F5DD00000001,
30A9F5DD00000002,
30A9F5DD00000003,
30A9F5DD00000004,

.

.

.

DB B

DB C

DB D

Virtually Unlimited
EID Users

64 Bit EIDs

32 Bit EID Seeds

Figure 4: EID Server Architecture

EIDs by appending a locally generated 32-bit EID suffix to a 32-bit EID prefix. The EID prefix
is an EID seed that is obtained from an EID seed server (ESS). In Figure 4, the EID values are
represented using hexadecimal notation where each character (with a value of ‘0’–‘9’ or ‘A’–‘F’)
represents a sequence of four bits. Therefore, 16 characters are used to denote a 64-bit EID.20

An ESS is a member of a special set of redundant servers that pass out EID seeds to registered
users. Since an EID seed is a 32-bit value, 4.3 billion ESs may be established.21 Because an EID
suffix is also a 32-bit value, each ES may generate 4.3 billion EIDs suffixes for its EID seed. In

EID Seed Server (ESS)

30A9F5DD

EID prefix.

EID Seed” i
EID Seed Server EID Prefix.

32 Bit (4 Byte) EID Seed
Prefix

An EID Server is established to provide globally unique, eight byte (64 bit) EIDs to
users by appending a locally controlled, unique, four byte (32 bit) suffix to the

.1 32

64 Bit (8 Byte) EID

32 Bit (4 Byte) Local Sequence

A globally unique, four byte (32 bit) “ s obtained
from an to serve as an

32.1

Suffix

Figure 5: Structurally, EIDs Based Upon EID Seeds Are Identical To Those Based Upon Org-IDs

20 Note: each of the 16 characters (‘0’ – ‘9’ and ‘A’ – ‘F’) denotes one of the 16 combinations of four bits

0000 through 1111. The fact that 16 characters are also required to denote a 64-bit EID is a coincidence.
21 The actual value is 232, which is 4.295 billion.

 13

other words, this technique supports 4.3 billion ESs, each capable of providing 4.3 billion EIDs,
for a total of 18 billion-billion EIDs.

There is always a debate about address space size when this approach is used. The goal of this
implementation is to select the smallest possible, common size that is capable of accomplishing
the task. This choice is driven by bandwidth constraints, such as exists over tactical, wireless,
communication systems. Many of the benefits of EIDs are accentuated within these
environments. If necessary, the length of an EID can be increased in the future without
significant difficulty.22

3.1.2 EID Seed Servers (ESS)
ESSs are a special set of controlled servers that pass out 32-bit EID seeds to registered users.
They form a virtual server because, externally, they appear to be a single resource although
several tightly coupled, redundant machines would be used to provide robustness, rapid speed of
service, and backup.23 To establish an ES, one must obtain an EID seed from an ESS, which
requires obtaining an ESS user account. Obtaining a user account is not a difficult procedure,
but it is required. Anyone may request an account and they are currently granted freely to
encourage EID usage and to gain an experience base. Ultimately, accounts may be scrutinized
and limited to agencies and individuals with a bona fide requirement or official capacity to create
official enterprise data. Government examples are officials in corporate information offices
(CIO), acquisition organizations, such as program executive officers (PEO), project managers
(PM), and systems builders, and the simulation community. Currently, human intervention is
included as part of the authorization process. Eventually, it is anticipated that this will only be
required for non-traditional cases.

A prototype ESS is operational at https://ess.arl.army.mil. Registration occurs via a browser
interface over a secure connection. To register, a person must provide reliable point of contact
(POC) information and the position of the POC (e.g., Assistant PM for the XYZ systems) or the
reason for the account. As with many web-based systems, a valid email address is a key account
requirement. Once an ESS user account is established, a user may request EID seed accounts.
Although one EID seed account is normal, several accounts may be established. Each EID seed
account is for a specified usage level that designates a number of seeds. The usage levels are:
normal (one seed), moderate (10 seeds), heavy (100 seeds), and special (over 100 seeds). The
usage level can always be increased at a latter time. Recall that one EID seed can be used to
produce 4.3 billion EIDs, so large blocks of EID seeds would only be required for cases of
highly distributed and autonomous systems (e.g., warrior and on-board command and control
and weapon systems).24 Once an EID seed account is obtained, the account owner can obtain
EID seeds and establish ESs to provide EIDs directly to data creators.

22 Database fields can be increased in length without losing data. If a size change is affected before the top bit of the

EID Seed is used (i.e., before the 2.1 billion, or 231, value is reached) then it can be used as a discriminator if both
64-bit and a larger sized EIDs coexists.

23 Currently, the ESS is a single machine. In the future, it will be distributed among several machines.
24 For example, a PM may be deploying thousands of systems that each require an autonomous data creation

capability. This can be accomplished in several ways, to include providing individual EID seeds to each system,
or by dividing up the 4.3 billion EIDs producible from a single EID seed.

 14

An ESS can provide other services in addition to allocating EID seeds. One of these is a EID
tracking service. Recall that a primary advantage of EIDs is that they facilitate the creation of
arbitrary associations between disparate data located within independent databases. In this
environment, it is inevitable that one will occasionally receive an EID that references data
unknown to the local system.25 For these cases, the ESS provides a tracking service via the
“Find-EID” command. A user simply enters the unknown EID or EID prefix and the POC
information about the user that owns the EID seed is provided.

However, this is only the first step of the process. When establishing an EID seed account, a
user may enter a URL26 of a host that will provide a tracking service for the EIDs produced from
the EID seeds received under that account. This is completely at the user’s discretion. 27 The
tracking service can be on any host selected by the user — it does not have to reside on the ES
established for the EID seed. This is to allow proxies to be used in situations where users do not
want to advertise their ES(s) due to security or other reasons. If a tracking service URL is
provided by the EID seed account holder, then the Find-EID command is forwarded to that host
and the EID trace continues until the data repository containing the item tagged by the EID is
reached. At the repository, the Find-EID command is converted to a “Fetch-EID” command that
returns XML28 code that describes the structure and values for the unknown data tagged by the
requested EID. This code is returned to the user that initiated the Find-EID request. It is
emphasized that an ESS contains no information about the data tagged with EIDs, but only the
POC information provided by the ESS account subscriber, which may include a tracking service
locator URL.

The tracking service can also be used as a validation service. An ES can contact the ESS to
verify that it is using a correct EID seed. Because humans receive EID seeds, it is plausible that
an EID seed can be entered incorrectly into an ES when it is established (or is being re-initialized
after a malfunction). An ES can contact the ESS and use the Find-EID command to verify that it
is using a valid seed. By entering its own EID seed as the prefix, the resulting POC data can be
compared to the expected values.

3.1.3 EID Servers
Once an EID seed is obtained, an ES can be established to distribute its 4.3 billion EIDs. Recall
that an ES is any program that provides EIDs to one or more users. Upon accepting an ESS
account, a subscriber agrees to maintain ESs that adhere to four strict constraints:

(1) all EIDs distributed by ES programs must be a 64 bit sequence composed of a bona fide,
32-bit EID seed prefix allocated to the subscriber;

25 This should be a rare event in a tactical system where rigorous control is maintained over the data.
26 URL: Uniform Resource Locator – a web address.
27 This is analogous to Internet domain name service requests. Not all IP addresses are registered.

This is the prerogative of the IP address owner.
28 XML – The Extensible Mark-up Language, a standard for describing the structure of information. Proposed

standard ways for capturing the structure of the data are being developed based on XML, such as XMI (XML
Metadata Interchange). In addition, large software producers are adopting XML as a data transfer mechanism.
See http://www.w3.org/XML/.

 15

http://www.w3.org/XML/

(2) EIDs are maintained in either binary form as a single 64-bit field, or two 32-bit fields, or
as 16 characters using hexadecimal notation,

(3) the ES program must ensure that the EIDs it produces are never duplicated. In other
words, it must ensure that its locally generated 32 bit suffixes are always unique (i.e., it
never allocates the same suffix twice), which implies that the ES must have some type of
backup scheme to prevent re-use in the event of a power loss or major malfunction.

(4) the ESS subscriber’s POC information must be kept current.

Other than these four constraints, the ES owner has autonomy in how the ES is implemented.

Recall that an ES can be as simple or complex as its designer requires. The ES owner decides
most implementation details, such as who is allowed to access the ES, how access is protected,
and how EIDs are allocated. Access to an ES can be categorized as single-user or multi-user. A
single user ES limits access to a single program, machine, or user. This may be the preferred
approach for isolated systems, such as those with individual warriors (e.g., forward observers or
special operations teams) or for personal digital assistants (PDA).29 A multi-user ES allows a
variety of users and may be open, meaning anyone may obtain EIDs from it, or restricted,
meaning that one requires permission to obtain EIDs. The ES owner decides whether
protections, such as passwords or link encryption, are required

The ES owner specifies how EIDs are allocated. The scheme does not need to be sophisticated.
For example, a simple technique is to merely add one to the previous EID suffix for every EID
request (i.e., 1, 2, 3, … , up to 4.3 billion). Such a mechanism would require just a few lines of
Java® code to implement a single-user, embedded ES (e.g., like that used in a PDA). At the
other extreme, a large, multi-user ES may use more sophisticated EID allocation schemes. For
example, the EID suffix space may be divided into segments so that each system has it own
block of EID values. Regardless of the allocation scheme used, to meet the uniqueness criteria,
some type of persistent backup is required. This is to ensure that duplicate EIDs are never
produced as a result of an ES malfunction or system fault. The details of how this is
accomplished are a local implementation decision.

Like the ESS, an ES may offer a tracking service. To do this, the ES must maintain a record of
an EIDs destination. For a single-user ES this is a trivial task since it is providing EIDs to only
one destination. For a multi-user ES, this requires additional functionality akin to the ESS.30 In
any case, the ES owner always retains control over its operation. For example, it is perfectly
permissible to limit responses to tracking service requests based on any criteria deemed
appropriate by the ES manager.

3.1.4 EID Server Location Flexibility
The new way in which EID prefixes are obtained does not result in a change from the original
concept to the deployment options for ESs. This section is a review of those options from the
Logistics Study (for completeness), since they are applicable to integrating administrative and
battlefield automated personnel systems.

29 For example, a Palm Pilot.®

30 At this point, one should recognize the striking similarity between an ESS and a multi-user ES. They are
essentially equivalent with the exception of the size of the bit sequence they provide (i.e., 32 versus 64 bits).

 16

The elegance of this architecture is its flexibility. When an AIS creates data, it must obtain an
EID from an ES. The AIS and ES do not have to be co-located and their proximity will depend
upon policy, performance, and security issues. An ES may be embedded within an AIS, it may
be located onboard a common platform (e.g., computer), or it may be accessed via a local or
wide area network (LAN, or WAN, respectively). These cases are illustrated in Figure 6.

DBMS EID
SVR

EID
SVR

EID
SVR

Onboard /
Embedded

Local

Remote

ES Seed:
613245536

ES Seed:
914432436

ES Seed:
7799142

AIS

Figure 6: EID Server Location Options

Usually, performance will be the driving force behind proximity decisions for ESs and AISs.
Certainly, isolated computer systems, like those carried by soldiers or on combat vehicles, will
have onboard ESs tightly integrated with the database management system. Command posts and
tactical operation centers could choose onboard or redundant ESs accessible on a LAN. Highly
controlled, tightly coupled applications may choose to access a common ES via a secure WAN.
Configuration control is immensely flexible and the options are boundless. The design decision
belongs to the system managers.

To demonstrate these options, consider four extreme cases:
• centralized database with collocated ES,
• decentralized databases with collocated ESs,
• centralized database with decentralized ESs, and
• decentralized databases with a centralized ES.

The first two examples illustrate cases in which an AIS is collocated with the ES it uses. Figure
7 illustrates a completely centralized situation in which every user utilizes programs on a
centralized machine, perhaps via a browser, to create and manipulate data. At the other extreme,
there could be 4.3 billion independent, decentralized AISs each with their own embedded (or
collocated) ES. This is the completely decentralized case, illustrated in Figure 8 that is
exemplified by the extreme case of 4.3 billion users each with a wearable computer. Because
each AIS has its own ES each using a unique EID seed, all the data created by the 4.3 billion
users is guaranteed to be tagged uniquely (i.e., there will be no collisions).

 17

DBMS

EID
SVR

A

D

B

6

5

4

3

2

1

7

C

Users 1 - 7 in
Organizations B, C, & D All Use One
Centralized DBMS and EID Server
Owned By Their Parent Agency A

Users 1 - 7 in
Organizations B, C, & D All Use One
Centralized DBMS and EID Server
Owned By Their Parent Agency A

Owner

Users 1 - 7 in Organizations B, C, and D
Each Have Their Own DBMS with a EID Server

Users 1 - 7 in Organizations B, C, and D
Each Have Their Own DBMS with a EID Server

A

DB

654321 7

C

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

EID
SVR

DBMS

Figure 7: Extreme Case – Centralized Figure 8: Extreme Case – Decentralized

There can also be a mixture of these two extremes. If a high-speed network is available, an AIS
does not have to be collocated with the ES it uses. Figure 9 illustrates a centralized AIS that has
many, distributed ESs located with the system users. As each user inserts data into the
centralized AIS they provide their own EIDs to uniquely tag the data. For example, each user
could have its ES embedded in a smart card that can be inserted into a local machine to create
data in the centralized database under its authority.

Conversely, Figure 10 illustrates a set of distributed AISs that share a common ES. To insert
data into their local AIS, the user must obtain an EID from the central ES. The central ES may
also include functions to check that other constraints are satisfied. For example, this might be a
case where people are responsible for a portion of a distributed database and the central ES can
check that they create only the data that they are authorized. These four examples show the
extreme cases. Real configurations will reside somewhere in the middle of these extremes. The
advantage portrayed by this ES approach is that each system builder may implement their ES
configuration based upon their own local policy, procedures, and performance requirements.

In summary, an EID server:

1. Must provide 64 bit EIDs (or its hexadecimal equivalent) using a bona fide EID Seed prefix.

2. Must never duplicate an EID. This implies that it must have some type of backup scheme to
prevent re-use in case there is a loss of power or major malfunction.

Users 1 - 7 in Organizations B - D Each Have Their Own DBMS
But Get Their EIDs from a Centralized EID Server Owned by Org A.

Users 1 - 7 in Organizations B - D Each Have Their Own DBMS
But Get Their EIDs from a Centralized EID Server Owned by Org A.

A

DB

654321 7

C

DBMS DBMS DBMS DBMS DBMS DBMS DBMS

ES

Users 1 - 7 in Organizations B, C, & D Each Have Their Own EID Server
But Populate a Centralized Materiel Server Owned by Org A.

Users 1 - 7 in Organizations B, C, & D Each Have Their Own EID Server
But Populate a Centralized Materiel Server Owned by Org A.

A

DB

654321 7

C

ES ES ES ES ES ES ES

DBMS

Figure 9: Mixed Extreme One Figure 10: Mixed Extreme Two

 18

3. Must be established by an authorized person who is registered with the ESS and maintains
current point of contact (POC) information. The subscriber may change any POC data, but it
must be reflected at the ESS. [Note that the enterprise is now defined as the set of users of
the ESS and is not constrained by service, governmental, or national borders.]

Nearly all ES implementation decisions are made at the discretion of the ES owner. Features
such as optional services (e.g., a tracking service), encrypted links, login passwords, and single
versus multi-user functionality as well as other access controls and security constraints are all
local decisions. The goal is to maximize flexibility via local control and minimize bureaucracy
once an EID seed is obtained.

3.2 EIDs as Alternate Keys
Although there are significant advantages for database maintenance when using EIDs as primary
keys, all the interoperability advantages are equally obtained when they are used as alternate
keys. Thus, EIDs can be implemented without modifying the existing primary key system in a
legacy database.31 If the legacy system is a relational database, three tasks are required to
implement EIDs. First, a single new column is added to each existing table to hold an EID.
Second, an EID is assigned to each of the existing rows. Third, the insert routing is modified so
that every subsequent insertion populates the EID column with a new EID. The existing
applications are unaffected and the EIDs can be exploited if and when the system managers
deem necessary.

To support future capabilities, the legacy system maintainers may implement two relatively
simply features. First, a “Fetch-EID” command, as was previously described, is required if one
wants to support the EID tracking function. This is a command that, given an EID, finds the row
of the database that is tagged with the EID and returns XML code that describes the attributes of
the row. To facilitate this feature, it is helpful to add and maintain a simple table that maps each
EID to the name of the table in which it resides. This allows one to rapidly identify the table in
which to search for the EID.

3.3 Application Of The EID Concept To Reference Libraries

One of the topics of the logistics study included organizing large sets of materiel data into what
is essentially a reference library. There are analogous topics in the personnel community. One
way to categorize data is by its perishability. Using this perspective, data may be categorized as
static, stationary, and dynamic. Reference data is static data. Examples are lookup table entries
for state, airport, or country codes. At the other extreme is dynamic data. As its name implies, it
is constantly changing and must be updated frequently to remain synchronized. Situational
awareness (SA) data is in this category. The third category lies between these two extremes.
Stationary data is information that is “semi-static,” meaning that it is relatively invariant over its
lifetime and its periodicity is known and of significant duration to allow it to be treated as static

31 See Annex A at the end of the main document for a detailed analysis of implementation issues and adoption of

EIDs in legacy systems as well as planned systems.

 19

data; that is, it may be reasonably maintained in a shared reference library.32 An example of
stationary data is phone numbers. Although thousands of phone numbers are added, deleted, and
changed daily worldwide, it is not a frequent event for a person’s phone number to change.
Usually, a person’s phone number is static for the duration of their tour of duty. Therefore,
phone numbers can be reasonably maintained in a reference library, called a phonebook, that is
only distributed once per year. The small subset of new, changed, and deleted phone numbers is
handled via other means (i.e., directory assistance). Consequently, although stationary data is
not static, it is “static enough” to treat it as reference data (i.e., maintained in a reference library).

DOD Reference Library

Stationary Data is Preloaded into a Database, then the Defaults can be
Re-linked and Augmented Via Digital Operations Plans and Orders

Force Structure

Organization Servers

Logistics

Materiel Servers

Warrior
Personnel

Servers

Infra-
structure

Facility Servers

Terrain

Feature Servers

Figure 11: Suite of Servers that Contain Stationary Data

A large subset of personnel data can be categorized as stationary data. Information such as codes
for military occupational specialties (MOS), additional skill identifiers (ASI) and skill
qualification identifiers (SQI), and skill levels are stationary data. Just as with materiel data, it
makes sense that this information should be defined and maintained by the specialists who do it
for a living. In other words, battle command systems users should obtain this information on a
periodic basis from an authoritative source.

Recall that several C4ISR33 oriented data models include a common set of five basic battlefield
entities: ORGANIZATION, MATERIEL, PERSON, FACILITY, and FEATURE. These five data domains
contain large amounts of information that can be categorized as stationary data. This means that
the data can reside in common reference libraries, provided via data servers, and can be
periodically downloaded into operational battle command systems; see Figure 11. Three of these
domains, organization, materiel, and personnel, will provide the initial focus of an Army
Organization Server (AOS). By rigorously controlling the update process of the stationary data,

32 Originally, stationary data was called reference data and reference data was termed lookup data. However, when

it was learned that a US Transportation Command initiative was in progress to standardized lookup tables, and
they called it reference data, the names were modified to be aligned with their study and avoid confusion.

33 C4ISR: Command, Control, Communications, and Computers, Intelligence, Reconnaissance, and Surveillance.

 20

users can be confident that they have a consistent set of reference material preloaded into their
computers.

EIDs can be used to provide a common naming scheme across the reference libraries (i.e., for
both the reference and stationary data) so that the common data will include a common set of
EIDs. Once users have downloaded a common set of reference libraries, they may refer to the
ITEMS by passing the terse EIDs instead of the bulky data, thus significantly reducing the
bandwidth required to manage this subset of C4ISR information.

There are many advantages to using meaningless values to identify data. One of the principles
for using EID is that two items with the same EID must be semantically equivalent. In other
words, one can locally add or modify the attributes of a data item from another source provided
the meaning of the data item is never changed. An example is that the name of a unit can be
changed from English to German and still retain the same EID because the EID still references
the same unit.

Consider static reference data, for example, country codes. Suppose that an official table exists
that contains the official country codes for the world, one record for each country. Further,
suppose that each country gets to pick what it wants to use for a two-character country code (a
business key). Hidden from the user is the fact that each record is tagged with an enterprise-
wide, unique EID. When an association with a record is required, or when machines exchange
data, it is the EID that is of primary interest, not the two-character code. Although the United
States may pick a two-character code of “US” for its official entry, other values can be attached
to the same EID provided they “mean” the same thing. For example, different languages will be
required, so an alias for “US” might be “EU” (in a Spanish system), or “VS” (in German), or
“SU” (in Italian). As long as it is attached to the same EID that resides in the official table (the
authoritative source), it will reference the same semantic entry (i.e., the country known by the
name of the “United States of America.”).

Because reference table codes usually have meaning to them (i.e., “US” for United States), they
are highly influenced by change. However, since an EID has no information encoded into it,
there is never a reason to change it. This helps to disambiguate the maintenance of standard
codes. Clearly, the same code value (e.g., “US”) can exist in many tables, so a code without a
table name is meaningless. However, as codes get updated, their EID does not change unless the
semantics of the code also change (e.g., Czechoslovakia [CZ] became two new countries, the
Czech Republic [EZ] and the Slovak Republic [LO]). As enumeration becomes popular (i.e.,
numbering the table values from 1 to N), EIDs become even more useful since tables will
contains many of the same value. EID are very useful because they unambiguously track the
evolution of the meaning of a code. An EID denotes one, and only one, entry in one table in the
entire enterprise. Thus, if a code changes but the meaning does not, the EID can remain. If the
meaning changes, an EID can be clearly linked to its successor or successors. This general
technique can be applied to any reference data (e.g., blood-type code) or stationary data (e.g., the
title of an MOS).

3.4 Data Ownership, Authoritative Sources, and Duplication

To provide a consistent product in an environment where the lines of ownership for reference
and stationary data are rarely perfectly clear, it is important that authoritative sources be
identified, sanctioned, and funded. For personnel data, like materiel data, it is difficult to

 21

identify a single, definitive creator for all domain data. Therefore, identifying a responsible data
source (i.e., maintainer) may be the best option and this is often policy driven rather than
technology driven. Using EIDs makes the task of assigning a unique identifier to a new soldier
technically easy. However, deciding who is authorized to execute this task is a policy decision.
When using EIDs, it is technically viable to allow the recruiter to create the initial record about a
soldier and thus assign the permanent EID to be used by all other systems. This is an example of
the decentralized control scheme illustrated in Figure 8.

EIDs do not solve the duplication issue.34 They are assigned when data is created and there is no
technical way to prevent two different users from creating duplicate entries in their respective
MATERIEL tables and tagging them with different EIDs. Preventing duplicates can only be
accomplished via policy. For example, there is no way to prevent both the Army and the Navy
from creating data about Army personnel and each assigning them different EIDs. The only
solution is to state a policy that the Army is the authoritative source of information about US
Army employees, regardless of who creates it. In this case, the Army (e.g., PERSCOM) would
take responsibility for collecting and maintaining the authoritative source of its civilian employee
data. This doesn’t mean that others cannot create Army personnel data, only that the Army
controls who is allowed to create the data. The point being that an EID system cannot prevent
unauthorized duplicates from being created, but it can ensure that only one authoritative source is
identified and sanctioned.

A good example of a strategy to implement such a policy is illustrated in Figure 10. Consider a
system such as DIHRMS.35 The assignment of EIDs could be controlled at the DoD level, yet
each service would be responsible for entering its own employees. In Figure 10, node A is the
DoD, and nodes B-D could be the Army, Navy, and Air Force. How each service obtains its
EIDs is an implementation issue. Blocks of EIDs could be assigned a priori, or they could be
obtained in real time provided sufficient bandwidth was available between the databases and the
ES. The same approach could be used by each service. EIDs could be assigned in some central
personnel facility, or it could be accomplished at the recruiter level when they enter the data for a
new recruit. Any configuration is possible, but in each case some authority must designate an
authoritative source and define the control policy.

Clearly, a significant benefit is achieved when the chosen authoritative source is an agency
already responsible for the data (i.e., the proponents). This helps ensure that the data is not only
consistent, but timely and accurate as well. To accomplish this, a proponent for the data must be
identified to rigorously control the creation, collection, maintenance, and deletion of the domain
data. A reasonable practice is to begin with the agencies that already maintain the data as part of
their charter. For example, every service has a force structure development community that
handles a wide variety of force structure documents. These agencies should be the owners of the
stationary and reference data for organizations. The same is true with materiel and personnel
data.

34 The implementations discussed here guarantee so-called one-way uniqueness only. In other words, no two EIDs

will be identical at the time of creation and assignment. Achieving two-way uniqueness within the enterprise is
essentially a policy and procedures issue.

35 See footnote 2, pg 6.

 22

3.5 User Access To EID Servers

For an EID system to work, it must be easily accessible to users while still offering a sufficient
degree of protection. This was a major impetus for the redesign of the EID allocation scheme
away from one that was Org-ID-based. The technologies required to provide user access to the
ESS have reached a sufficient level of maturity so that it can be fully Web-based, provide
sufficient degree of security, and have adequate traceability.

The current design and policy allows anyone to request an ESS account. This has a significant
ramification on the scope of one’s “enterprise.” Under this model, the enterprise is defined by
the set of ESS account subscribers. There is no service, governmental, or international
boundaries created with this approach. The set of users can include military services, other
government organizations, private volunteer organizations, industry, academe, or any other
organization regardless of country of origin. This provides complete support for joint, coalition,
and peacekeeping operations. Such an enterprise highlights why it is important to have a simple,
common format for identifiers. In this environment, SSNs are not universal.

There are two characteristics of EIDs that allows this openness and flexibility. First, an EID seed
reveals nothing about the data it is used to tag. All that is known by the EID server is that
someone obtained a set of EID seeds (one or more). How the EID seed is used is completely up
to the owner. Just because data is tagged with an EID does not mean that it is shared – it simply
makes it easy to reference and share if desired. Therefore, data owners retain complete
sovereignty over their data and share only what they desire while still participating in the EID
system. This facilitates ease of data sharing without requiring it. Second, an EID is not a
security mechanism—it is only an identification mechanism. It is presumed that, like other
critical data, data tagged with EIDs are protected from basic security risks36 just like other data.
EIDs do not alleviate the requirement for cryptographic and other means of protecting data.

To ensure easy access, a web-based access point is used. By dividing ESS access into two
phases, registration and allocation, simplicity is maintained. Users register to get an ESS user
account. This is where the bounds of the enterprise are determined. Those given accounts are
part of the enterprise from an EID perspective. Recall that once a user account is obtained,
subscribers may request allocations of EID seeds via EID seed accounts. This is a separate
action and should not be a frequent activity. Recall that one EID seed can be used to create (i.e.,
tag) 4.3 billion data items. Once the seed is obtained, the user may proceed completely
independently from the ESS.

3.6 Choice Of Optimal Taxonomies

During the logistics study, a plethora of taxonomies for materiel and logistic items were
discovered. Although not as copious, several variations of perspective were also discovered for
the personnel domain. As with any domain, there is no “correct” taxonomy, so the choice of
how to categorize and compartment the data is “left to the implementer.” A primary problem is
one of overlapping semantics. Many different models refer to the same concept or object from
different perspectives. What would be helpful is a simple, unambiguous way to cross reference

36 For example, integrity, confidentiality, authenticity, and non-repudiation.

 23

common entities, across a wide variety of models and taxonomies, without having to have pre-
arranged data structure mappings. This is where EIDs are of great utility.

Recall that EIDs provide a way to conveniently reference any object, entity, or fact regardless of
its data storage technology or structure. This allows one to build arbitrary relationships between
items from disparate data sources. Because EIDs have a common format with no inherent
intelligence, any object can be referenced without knowing its form. This allows a single
reserved field37 to refer to any object in the enterprise. Therefore, a single table of two attributes,
both EIDs, can be used to map analogous items. This does not alleviate the problem of having to
select data structures for the authoritative source, but it does provide the users of the source a
convenient facility to build their own data clusters from those of the source.

Once an unambiguous reference is obtained, syntactic tools and standards, like those associated
with XML, can be used to get detailed structural and composition information about the object
tagged with the EID. This allows the information to be entered into an AIS. If every AIS
provided a single external function called, say, Fetch_EID, that given an EID returned the XML
code defining the entity, then one could always obtain the structural data for any EID tagged
item regardless of its storage technology38.

Although the capability of being able to share syntactically equivalent information between
arbitrary data sources is the first enabler for interoperability, it does not solve the problem of
semantic equivalence. Conversely, semantic equivalence does not imply syntactic equivalence.
These are two different problems and EIDs focus on semantic equivalence. Depending upon the
resolution of the semantic definition, one can overload the definition to allow direct correlation
even though the syntactic definitions may vary. Consider a data item that denotes the location of
a particular physical object. If the formats of the location attributes are not tightly specified, then
two data entities can share a common EID. For example, one location for object X could be
represented in latitude-longitude and another in UTM coordinates. Both data items are
semantically equal; they represent the location of object X. They just happen to be different
syntactically. This difference could be different languages, units, or representations. But they
denote the same thing. If the semantic definitions were changed to the location of object X in
UTM Coordinates, a common EID could not be used for both items.39

The specificity of the semantic definition determines the amount of overlap permitted. When
combined with syntactic definitions like XML, this flexibility can significantly enhance
interoperability without requiring perfect translations. Unfortunately, there is no single, simple
solution to the problem of ensuring that two parties mean the same thing for a common term.
This must be accomplished via human exchanges at design time. But EIDs can support this goal
based upon the basic tenet that two items with the same EID must be semantically equal based
upon the resolution of the definition.

37 The terms field, column, attribute, and element are synonyms.
38 For example, whether it is a relational DBMS (RDBMS), object DBMS (ODBMS), or flat file.
39 Note that this is one of the weaknesses of typical data standardization efforts, such as the DoD 8320 process. A

possible solution to the problem may be to adopt an approach where the 'data element' is defined at a much higher
level of abstraction, and its syntax can then be made explicitly part of it. The ISO 11179 draft recommendations
present a possible solution to this issue.

 24

This basic tenet can be exploited in (at least) three ways. First, a data source developer can
provide several versions of the source. This could be based on technology (e.g., RDBMS,
ODBMS, etc.), specialty (maneuver verses logistics), or language (English versus German).
Items with the same EID are semantic equivalents, even if the format of the data maintained
varies. Second, two independent source developers can collaborate and share EIDs for items that
they agree are semantically equivalent. This approach is usually required for complex
components and associations whose relationships are not obvious. Finally, and most commonly,
a mapping can be built between EIDs for duplicative or overlapping entities that were
independently defined.

3.7 Benefit To The Warfighter

One of the toughest challenges for warfighters is managing uncertainty. What normally comes
to mind is the traditional “fog of war” associated with situational awareness. However, there are
many other circumstances that require flexibility for which digital data systems do not respond
well. Too often, digital systems are built with designs based upon strict process and data flow
charts that describe each expected phase, input, output, source, and sink as a system (or system
of systems) operates. Unfortunately, in the new environment of joint and coalition operations,
one does not always know ahead of time with whom data will be shared and how it will be
related. As the old adage goes: “a plan is only good until the first rounds are fired.”

EIDs provide two important features to help the warfighter manage uncertainty. First, as
previously described, they provide a uniform facility for relating together arbitrary pieces of
data. During the design of a database system, only a very small percentage of the possible
associations are identified. The vast majority of the set of all possible associations will never be
used, so under the current database schemes it is unwarranted (and too costly in space, time, and
money) to address all possible conditions. On the other hand, it is likely that many more
associations will be required than were identified at system design time.

Since EIDs are uniform, unintelligent identifiers, a single table can be used to define any
associate from the set of all possible associations. One does not need to identify the particular
association ahead of time. This is because the format of the identifier is known, so an
association can be established provided that an attribute the size of an EID is reserved. This is
the ideal condition for a data mining system. Arbitrary relationships can be established without
prior coordination. It is exactly this fundamental capability that is required to facilitate building
data interoperability on-the-fly between joint, coalition, and non-military systems.

Figure 12 illustrates a simple example. A data structure named a “sensing” entity is established
to associate three other entities: an owning organization, a sensor (a piece of materiel), and the
object being sensed. In this example, this last association is maintained in a field called
“Target.” This field is the size (or format) of an EID, so it can be used to associate the sensing
entity to any entity that is tagged with an EID. Suppose that a sensor makes an initial contact
and determines that the item being sensed is a tracked vehicle. At state T1, the sensing entity’s
target field contains the EID of the materiel-type40 object for “tracked vehicle.” As more
information is gleaned, it is determined that the item being sensed is a particular type of tracked

40 Also called a materiel-item by the logistics community.

 25

SENSING ENTITY

Organization (Friendly)

Ow ner Sensor Target

Materiel (Friendly)

T3

T2

T4

X Bits

T1

Mat-Type-EID Materiel-Type (Tracked Veh.)

Enemy-
Mat-Type-EID Materiel-Type (T-72 Tank)

Enemy
Org-Type-EID Organization-Type (Recon)

Enemy-
Mat-EID Materiel (Veh AB-23)

X Bits

T5

Enemy-
Org-EID Organization (1/2/34/92 Div)

Figure 12: Arbitrary Plug and Play of References to Disparate Entities

vehicle, a T-72 tank. At state T2, the Target field is updated with the EID for the enemy-
materiel-type “T-72 Tank.” A short time later at state T3, it is determined that the vehicle is
actually part of a cluster of vehicles that makes up a reconnaissance element, which is an
organization-type. The EID in the Target field is updated to reference the organization-type
entity of a recon element. Moving between entity types is not a problem because all EIDs have
the same format allowing one to easily change the reference from a materiel-type to an
organization-type. At state T4, an actual vehicle identification number is determined, so the
Target field is updated to hold the EID for a specific item of materiel (with a serial number).
Finally, at state T5, the identity of the cluster of vehicles is determined and the EID for a
particular organization is entered in the Target field. Even though the entity being sensed
progressed from a materiel-item, to an organization-type, to a piece of materiel, to an
organization, only a single field (the Target field) was required to maintain all of these
associations. One does not have to determine ahead of time all the possible cases. Because the
Target attribute contains an EID, it can be used to denote an association with any entity in the
enterprise: a person, waveform, bridge, location, network, plan, or anything else. This is the
flexibility obtainable by using EIDs.

This is precisely the reason that the LC2IEDM41 uses the object and object–type schema for the
five basic battlefield objects. It allows any ORGANIZATION, PERSON, MATERIEL, FEATURE, or
FACILITY (and their typed variants) to be associated. However, to accomplish this objective
across arbitrary data systems, having a common format is not sufficient. One must also have
unique enterprise identifiers (the ‘E’ in EID).

The second advantage to the warfighter is an “out-of-band” facility to provide unique identifiers
across unanticipated connections. Anyone deemed potentially valuable to the enterprise can
obtain an account on the ESS and independently implement EIDs. In other words, this is an

41 See footnote 17, pg 6.

 26

open standard—there is nothing proprietary or closed about it.42 Neither the military commander
or acquisition community has to enforce this action. Any country or organization that desires to
exchange data with military systems can use EIDs based on EID seeds from the ESS. Because
EIDs are unintelligent, they can be used by anyone. Because they do not have to be primary
keys, they can be added at any time. Thus, the EID facility offers the warfighter a simple facility
to substantially assist in the building of “on-the-fly” distributed systems.

3.8 Benefits To Database Evolution And Managing Change

A primary impetus for developing EIDs (and earlier surrogate keys) was system maintenance
and evolution. Data interoperability is just one of many secondary effects realized by EIDs.
EIDs provide a flexible approach to evolve the structure of a database and manage the inevitable
changes that arise from new requirements. Cost saving benefits can be accrued when data is
managed more like objects rather than tables in a traditional RDBMS. Instead of reviewing the
extensive benefits of EIDs in this area, a series of excellent articles are recommended. From a
relational perspective, Dr. Tom Johnston has written an excellent series of articles on enterprise
keys (EK) for DM Review that are available online.43 The first two articles describe the basic
problem and the last four discuss implementation issues. Of particular interest is the foreign key
ripple effect described in the articles. Other advantages to using unintelligent global keys are
also presented that are of fundamental interest to DBMS designers and users.

In addition, because EIDs are technology independent, they offer a potential bridge between
relational and object-oriented technologies. This chasm is very apparent in the Army between
the command and control (C2) and simulation communities. A recent effort to accelerate
interoperability between real systems and simulations has resulted in several programs to
integrate these communities (see the Army’s Simulation to C4I Systems Integration (SIMCI)
project44).

42 Current initiatives to adopt commercial systems with their proprietary ERP solutions may not be adequate to

support the ad hoc end user of DoD information systems, namely the coalition warfighter.
43 Tom Johnston has written an excellent set of articles on EKs for DM Review that is available online. The first

two articles describe the basic problem and the last four discuss implementation issues:

Primary Key Reengineering Projects: The Problem; DM Review, February, 2000;
http://www.dmreview.com/master.cfm?NavID=55&EdID=1866

Primary Key Reengineering Projects: The Solution; DM Review, March, 2000;
http://www.dmreview.com/master.cfm?NavID=55&EdID=2004

De-Embedding Foreign Keys, Part 1: DM Direct, June 2, 2000.
http://www.dmreview.com/editorial/dmreview/print_action.cfm?EdID=2308

De-Embedding Foreign Keys, Part 2; DM Direct, June 9, 2000.
http://www.dmreview.com/editorial/dmreview/print_action.cfm?EdID=2322

De-Embedding Foreign Keys, Part 3: DM Direct, June 16, 2000.
http://www.dmreview.com/editorial/dmreview/print_action.cfm?EdID=2331

De-Embedding Foreign Keys, Part 4: DM Direct, June 23, 2000.
http://dmreview.com/editorial/dmreview/print_action.cfm?EdID=2341

44 SIMCI: see https://simci.army.mil/

 27

http://www.dmreview.com/master.cfm?NavID=55&EdID=1866
http://www.dmreview.com/master.cfm?NavID=55&EdID=2004
http://www.dmreview.com/editorial/dmreview/print_action.cfm?EdID=2308
http://www.dmreview.com/editorial/dmreview/print_action.cfm?EdID=2322
http://www.dmreview.com/editorial/dmreview/print_action.cfm?EdID=2331
http://dmreview.com/editorial/dmreview/print_action.cfm?EdID=2341
https://simci.army.mil/

4. PERSONNEL ONTOLOGY AND MODELING ISSUES

4.1 Basic Entities in Battle Command System Models

To exchange information unambiguously, there must be agreement on the meaning of terms,
concepts, and processes. For automation purposes, an agreement must be formal; that is, it must
be methodically represented in a consistent form. However, there is no “correct” form for an
agreement because one’s perspective determines the details of the terms, concepts, and
processes. This is certainly true between the administrative and battlefield systems that
exchange personnel information.

The term “ontology” is used to describe how one represents the knowledge and information of a
particular domain or subject area.45 One way to specify an ontology is with a data model. A
popular technique being used throughout the database community to specify relational database
structures is IDEF1X.46 Fortunately, both the administrative and battlefield system database
designers use IDEF1X to document their models. Unfortunately, as expected, they have
different perspectives of how to classify the information. Systematics is the science of
classification and it includes the building of taxonomies of domains. This is one of the basic
tasks of the modeling process and is accomplished via the generalization hierarchy in IDEF1X.

Recall from Section 3.1 that there are several battle command systems that utilize one of several
related data models (all in IDEF1X notation) that incorporate five basic battlefield domains.47
These domains have two basic classes of entities: instances and templates. Generally, instances
are created from templates and the term “IS A” is often used for these associations. For
example, “A Company is a Rifle Company” where A Company is the instance built from the
rifle company template. Usually, there are many instances for a single template and (in these
data models) the template name ends with the suffix “type.” Figure 13 provides the names of the
instances and the associated type for the five battlefield domains along with a simple example.
The AOS will include four of these entities: organization, organization-type, personnel-type, and
materiel-type and the default relationships between them.

It is important to understand the distinction between instances and types. Army force structure
documents, like TOEs and MTOEs, refer to type information from which several real
organizations (ORG) can be activated. In other words, organization-types (ORGT) provide a
hierarchical structure of other ORGT that are associated with the types of people and materiel
required to support a set of required missions.

45 See http://www-ksl.stanford.edu/kst/what-is-an-ontology.html for a short description of ontologies.
46 IDEF1X: ICAM (integrated computer aided manufacturing) DEFinition method number 1 – eXtended.

For an excellent tutorial, see Thomas A. Bruce. Designing Quality Databases with IDEF1X Information Models.
Dorset House Publishing, New York, NY, 1992.

47 See footnotes 17 and 18, pp 10 and 11.

 28

http://www-ksl.stanford.edu/kst/what-is-an-ontology.html

4.2 Personnel Data in the Context of Battle Command Systems Data Models

The personnel domain encompasses two of the ten entities described in Figure 13, persons and
person-types. A person is “flesh and blood” while a person-type describes the qualifications and
experiences of a person from a military perspective. It is important to understand the subtle
differences between organization, organization-type, person (PERS), and person-type (PERST)
entities used in the battle command system data models and how they relate to data entities in
administrative data models. An understanding of their relationship with common terms (like
billet, position, paragraph, line number, and SRC48) is also required. A description of these
entities and terms is provided in the following sections.

4.2.1 Organization [ORG]

Organizations represent a real Department of Defense (DoD) unit with people assigned and an
official unit name. In the DoD, official units are provided a Unit Identification Code (UIC).
However, the granularity of UIC assignments is limited. Within in the Army, UICs are normally
assigned down to the echelon of company (battery or troop). Units below that may be identified
with derivative UICs (of which there are many forms), or other identifiers, such as the Unit
Reference Number (URN) used by the VMF49 messaging community to track units on the
battlefield, often at the platform level. In a relational database, every data record is identified
with a primary key. In battle command system databases, like the JCDB, the Org-ID serves this
purpose for organization records. Soon, Org-IDs will be replaced with Org-EIDs.

Organization*
Real Units w/ UICs

Organization*
Real Units w/ UICs

Materiel
Real Objects w/ Serial. #’s

Materiel
Real Objects w/ Serial. #’s

Facility
Real Buildings w/ Addresses

Facility
Real Buildings w/ Addresses

Person
Real People w/ SSNs

Person
Real People w/ SSNs

Feature
Real Places w/ Locations

Feature
Real Places w/ Locations

Instance Template

“IS-A”

Entities Included in the AOS

Organization-Type
(a TO&E w/ SRC, Para, Line #)

Organization-Type
(a TO&E w/ SRC, Para, Line #)

Materiel-Type
Types of Objects w/ NSNs

Materiel-Type
Types of Objects w/ NSNs

Facility-Type
Cat. of Buildings

Facility-Type
Cat. of Buildings

Person-Type
Cat. of People; e.g., MOSs

Person-Type
Cat. of People; e.g., MOSs

Feature-Type
Cat. Of Places

Feature-Type
Cat. Of Places

Figure 13: Examples of Instances and their Associated Templates

48 SRC is a Standard Requirements Code used to identify TOEs. TOEs are updated annually (usually in April) in the

Consolidated TOE Update (CTU). So there may be several versions of a TOE (with the same SRC) with different
CTU effective dates. Therefore, an SRC and a CTU date are required to uniquely identify a TOE.

49 VMF: Variable Message Format, a joint standard for passing formatted messages among tactical systems.

 29

In the tactical environment, there is a requirement to identify organizations at a higher level of
resolution than company (as the requirement for URNs has demonstrated). Consequently, a
requirement for an AOS was generated and is included as part of the Force Management System
(FMS) operational requirements document (ORD). FMS will migrate four existing mainframe
systems to one modern system using a single integrated database to manage the active, reserve,
and National Guard units that make up the U.S. Army Total Force.50

One of the objectives of the AOS is to consistently extend the current force structure hierarchy
down to the billet level. A billet is “a personnel position or assignment that may be filled by one
person.”51 In other words, a billet becomes just another organization, but with the additional
constraint that it has one-to-one association with a person. Thus, the distinction between an
SRC, paragraph, and line number (found in force structure documents) dissolves as all the
members of the organization-type hierarchy are tagged with a consistent identifier, a primary key
called an Org-ID. To further enhance maintainability and interoperability in the AOS, Org-IDs
will use the EID structure. So technically, they are ORG-EIDs, but they are functionally identical
to Org-IDs.

4.2.2 Organization-Type [ORGT]

Organizations [ORG] are instances of organization-types [ORGT], or conversely, organization-
types represent the templates from which organizations are established. Consequently, the
elements of Army TOEs and MTOEs are denoted by ORGTs, and not ORGs. Further, the nodes of
a TOE or MTOE hierarchy do not get tagged with ORG-EIDs, but with ORGT-EIDs. This
distinction between instances and their types may appear trivial, but it is often a source of
confusion when discussing issues about this domain. It is easy to refer to ORGs when one means
ORGT, and vice versa. This is especially true at the billet level.

If a billet is an ORG, then what is the corresponding entity in the ORGT domain? A convenient
term to use would be a billet-type. However, in many personnel systems, the term position is
used. Unfortunately, this term does not exist in the DoD dictionary, and the definition of billet is
ambiguous: “a personnel position or assignment.” In this definition, the words “personnel
position” implies an ORGT, while the words “personnel assignment” and the phrase “filled by
one person” seem to imply an ORG.

To further complicate matters, in the battle command system data models, the generalization
hierarchies for ORG and ORGT use the terms POST and POST-TYPE (respectively) for the billet
level organizational entities. These definitions are clearly defined; a “Squad Leader” is a POST-
TYPE, while “Squad Leader/1st Squad” is a POST. Having multiple definitions, and closely
related ones at that, infuses considerable confusion into this domain. To abide by the vernacular
of the personnel community, it is recommended that the term position be used to represent
templates (an ORGT) and the term “billet” be used for the actual instantiation of the template (an
ORG). Under this paradigm, it is correct to state “a billet is authorized by a position.”

50 See: http://www.sra.com/services/fms.html
51 See Joint Publication 1-02 (15 Oct 2001): http://www.dtic.mil/doctrine/jel/new_pubs/jp1_02.pdf.

 30

http://www.sra.com/services/fms.html
http://www.dtic.mil/doctrine/jel/new_pubs/jp1_02.pdf

A current example can be found in the SIDPERS-3 data model52. Positions are stored in a table
named AUTH_POSN (for authorized position). Using the traditional relational approach (as
opposed to EIDs), a record for an authorized position is identified with a primary key that
includes three foreign keys: an authorization document key (AUTH_DOC_NBR) for an MTOE, a
paragraph key (AUTH_DOC_PARA_NBR), and a line number key (AUTH_DOC_LINE_NBR).
Together, these three keys uniquely identify an Army position (i.e., an ORGT) that is
accompanied by a multiplier in an MTOE. The multiplier defines how many of the Army
positions are authorized. For example, it may be stated that a rifle platoon is authorized three
“Squad Leader” positions. When a real unit is instantiated via this authorization, the multiplier
must be used to create three separate billets, each an ORG. In the SIDPERS-3 data model this is
accomplished by using the UNIT-MANNING table that adds a fourth attribute called “MILITARY-
ASSIGNMENT-POSITION-NUMBER” to differentiate each of the three squad leader billets. It is this
organization, or billet, to which a soldier may be assigned.

Using the terms defined in Figure 1, this configuration results in two distinct categories of
hierarchical tree structures, as is illustrated in Figure 14. The first category represents MTOE
data, or the templates from which real organizations are created. The nodes of these trees are
ORGTs and the links between the ORGTs include multipliers that define how many of each
subordinate ORGT are authorized. An ORGT tree is shown on the left with nodes A, B, and C.
The meaning of the links is aggregation and can be read as “Is-Composed-Of.” Node B has a
multiplier of 1 and node C has a multiplier of 3. So the chart is read: “node A is-composed-of
one node B and three node C’s.

The second category of tree represents real units that are established from the ORGT tree. The
nodes of this tree are ORGs and a separate node must be instantiated for each multiple defined in
the ORGT tree. An ORG tree is shown on the right with nodes 1 through 5. Like the ORGT tree,
the links denote aggregation. So the ORG tree is interpreted as node 1 is-composed-of nodes 2
through 5. Because the ORG tree represents real units, one could also state “organization 1 has

ORG TreeORG TreeORGT TreeORGT Tree

A

B

1

2 3 4 5

is-a Links

C

Figure 14: ORGT and ORG Trees

X 1 X 3

52 SIDPERS-3: Standard Installation/Division Personnel System - Version 3, a prevalent Army personnel system

that is now controlled by the Army Human Resource System Product Management Office;
See: http://www.peostamis.belvoir.army.mil/index4.htm.

 31

http://www.peostamis.belvoir.army.mil/index4.htm

subordinate organizations 2 through 5.”

Every ORG node must have a link to the corresponding ORGT node from which it was
established. These are often named “is-a” links. It can be stated that “node 1 is–a node A,” etc.
In other words, many of the basic characteristics of a real organization are stored in its
corresponding organization-type. Because many ORG trees may be established from a single
ORGT tree (i.e., many units may be established from a single MTOE), these common
characteristics need only be maintained in a single place – the ORGT tree. The five basic tables
required to maintain this model are: the ORGT table (nodes) and the ORGT-ASSOCIATION table
(links) for the ORGT tree; the ORG table (nodes) and the ORG-ASSOCIATION table (links) for the
ORG tree; and the ORG-ORGT-ASSOCIATION table for the “is-a” links between the nodes of the
ORG and ORGT trees.

Every row of these tables will have an EID that globally identifies that row. Consequently, there
will be ORGT-EIDs, ORG-ASSOC-EIDs, ORG-EIDs, ORGT-ASSOC-EIDs, and ORG-ORGT-ASSOC-EIDs.
It is the ORG-EIDs that are of particular interest to the tactical commander because these are the
items that are used to track unit status.

4.2.3 Person [PERS].

A person represents a physical entity composed of flesh and blood and, within the ranks of the
U.S. military, is assigned an SSN (Social Security Number). The primary key for PERS is a
PERS-ID. One may ask why not use SSN? In battle command systems the answer is simple – a
person can be friendly, enemy, neutral, or unknown, and in many cases may not have a (known)
SSN. Therefore, SSN is included as an attribute, and in many cases is an alternate key, but is not
the primary key.

4.2.4 Person-Type [PERST] and Skill-Type [SKILLT]

The person-type entity (PERST) already exists in several data models, whereas the skill-type
entity (SKILLT) is limited to a few. The mapping of person-type information between battle
command systems and administrative environments is more elusive than ORGT because (1)
PERST is used for two different purposes, and (2) equivalent attributes are spread among different
entities.

PERST has been used to describe both the requirements for a position and the qualifications of a
person. In the first case, a PERST is associated with an ORGT (i.e., a position) and defines the
skills and credentials required for a person to occupy the position. Any ORGT node may have
links to define the types and number of people and materiel that are authorized for that ORGT.
This is illustrated in Figure 15. In this case, an ORGT tree beginning with an ORGT named
“M2A2 Vehicle Crew” is composed of three subordinate ORGTs that are positions. These
positions are called “Section Leader,” “Gunner,” and “Driver.” Each position has a
corresponding PERST entity that describes the requirements to occupy that position. For
example, to be a Section Leader, one must be of grade E-6, have MOS 11M30, and be qualified
as a Master Gunner. Similarly, a materiel-type (MAT_TYPE) may be associated with any ORGT.
In this example, each “M2A2 Vehicle Crew” is authorized a “M2A2 BFV” (Bradley Fighting
Vehicle). Therefore, Figure 15 illustrates a subset of the information maintained in an MTOE
that is used to establish real organizations.

 32

A

B C D

X 1
“M2A2 Vehicle Crew”

“Section Ldr” “Gunner” “Driver”

E-6 / 11M30
Master Gunner

E-6 / 11M30
Master Gunner

E-5 / 11M20
RTO

E-5 / 11M20
RTO

E-4 / 11M10
RTO

E-4 / 11M10
RTO

ORGT Tree
MAT-Type

M2A2 BFV

Figure 15: PERST Used to Define Requirements for an ORGT

In the second case, PERST modifies a PERSON and describes the skills and credentials earned by
the person. This “overloading” of the use of PERST information is common across the services.
Army, Navy, and Air Force personnel regulations describe the scope of their classification
systems as applying to both the descriptions of the requirements for positions and to the
qualifications of those who fill them. An example of these two uses is illustrated in Figure 16 for
the LC2IEDM.

The path annotated by the number ‘1’ illustrates the use per Figure 15. It denotes that an
ORGANIZATION-TYPE (ORGT) is authorized one or more persons with the qualifications defined
in the associated PERSON-TYPE. When the ORGT is a position (i.e., a POST-TYPE), the number of

X 1 X 1 X 1

is-specified-through

is-made-up-through

is-specified-as-part-of

X 1 X 1 X 1

PERSON-Type

1

1

1

2

2 2

2

is-classified-as

P

is-used-as-a-classification-for

is-recognised-as-having /
is-ascribed-to

object-type-category-code
object-item-category-code

PERSON-TYPE
person-type-id (FK)

person-type-category-code
person-type-rank-code

ORGANISATION-TYPE
organisation-type-id (FK)

organisation-type-category-code

PERSON
person-id (FK)

person-alternate-identification-text
person-birth-date
person-blood-type-code
person-gender-code
person-religion-code

ORGANISATION-TYPE-ESTABLISHMENT
established-organisation-type-id (FK)
organisation-type-establishment-index

organisation-type-establishment-effective-date
organisation-type-establishment-environment-condition-code
organisation-type-establishment-name
organisation-type-establishment-operational-mode-code

ORGANISATION-TYPE-ESTABLISHMENT-PERSON-TYPE-DETAIL
established-organisation-type-id (FK)
organisation-type-establishment-index (FK)
detail-person-type-id (FK)

organisation-type-establishment-person-type-detail-quantity

OBJECT-TYPE
object-type-id

object-type-category-code
object-type-dummy-indicator-code
object-type-name
object-type-nationality-code

OBJECT-ITEM
object-item-id

object-item-category-code
object-item-name

OBJECT-ITEM-TYPE
object-item-id (FK)
object-type-id (FK)
object-item-type-index

reporting-data-id (FK)

PERSON-SKILL
person-id (FK)
person-skill-index

person-skill-category-code
person-skill-proficiency-code

Figure 16: LC2IEDM Associations with Person-Type

 33

persons is one, so the PERST entity describes the qualifications required of that position. The
reason the association is made with the more generic ORGT rather than a POST-TYPE is to allow
aggregation at any echelon (e.g., a tank battalion is authorized ten officers of grade 0-3 and
occupation code of 12A00).

The path annotated by the number ‘2’ denotes that a PERSON has the qualifications defined in the
associated PERSON-TYPE. In the ideal case, the qualifications of the person in the job match the
qualifications required for the job. If this were the case, then the record of the person in the billet
would refer to the same PERST as the record of the position associated with the billet; in other
words, “the right person is in the right job.”

Another common characteristic of personnel attributes that spans across the services is that, at a
higher level, they can be divided into two categories: those that are mandatory and those that are
optional. For example, every position (ORGT) and person entity must have a pay grade and
occupation associated with it, even if the occupation is defined as immaterial.53 These are
mandatory attributes. But each service also has attributes that describe requirements of
qualifications that span across occupations and pay grades that are not obligatory. These are
optional attributes and have titles such as: “additional skill identifiers” (ASI) in the Army,
“special experience identifiers” (SEI) in the Air Force, and “additional qualification designators”
(AQD) in the Navy. Consequently, one strategy for categorizing attributes is to divide them into
two categories, those that are mandatory and those that are optional, and create an entity to
maintain each set. Should this approach be used, it is recommended that accepted names in the
LC2IEDM, and other data models that have evolved from the ATCCIS Generic Hub, be
exploited and that the PERSON-TYPE name be used for the entity containing the mandatory
attributes and a new “skill-type” entity, SKILLT, be used for the optional attributes. Like PERST,
SKILLT would be associated with both positions and persons as is illustrated in Figure 17. This
allows the existing PERSON-SKILL entity of the LC2IEDM to be replaced with the more generic
concept SKILL-TYPE.

Is-Made_Up_Through

Defines-A

P

May-Have-A

Links-A

Person-Skill-Association
Person-Skill-Association-EID

Person-EID (FK)
Skill-EID (FK)

Organization-Type-Skill-Association
Organization-Type-Skill-Association-EID

Organisation-Type-Establishment-EID (FK)
Skill-EID (FK)

Person-Type
Person-Type-EID

Occupational_Specialty_Code
Skill_Level_Code
Skill_Qualifier_Code

Skill
Skill-EID

Additional_Skill_Code
AS_Description

Organization-Type
Organization-Type-EID

Person
Person-EID

Person-Type-EID (FK)

Organization-Type-Establishment-Person-Type-Detail
Organization-Type-Establishment-Person-Type-Detail-EID

Person-Type-EID (FK)
Organization-Type-Establishment-EID.Organisation-Type-Establishment-EID (FK)
Organisation-Type-Establishment-Person-Type-Detail-Quantity

Organization-Type Establishment
Organisation-Type-Establishment-EID

Organization-Type-EID (FK)
organisation-type-establishment-effective-date
organisation-type-establishment-name

Combined Org-Type

Person

Person-Type Skill-Type

Figure 17: Person-Type, Skill-Type, Org-Type, and Person Associations

May-Require

May-Be-Part-Of

May-Have

Links-A

53 Immaterial – meaning a position is open to a person of any occupation.

 34

4.2.5 Attributes for PERST and SKILLT

There are numerous attributes associated with personnel entities, but for battle command systems
the primary attributes of interest related to both requirement and qualification information are:

(1) rank and pay-grade,
(2) primary specialty or military occupation (e.g., MOS in the Army),
(3) special skill requirements (e.g., ASI in the Army).

The first two items, rank/pay-grade and military occupation, are mandatory in all the U.S.
military personnel classification systems. This information is associated with every military
position (ORGT) to define the requirements for the position, and with every person (PERSON) to
define the person’s basic qualifications. The third item, special skills, refers to optional
information. A position or person may have significant additional skill information associated
with it, or it may have none. For both position and personnel qualification data, it is
recommended that the PERST entity be used to maintain mandatory information and the SKILLT
entity be used to maintain optional information.

Using business rules, it can be stated that every ORGT entity that represents a position must have
an associated PERST to provide the basic occupational requirement for the position. This is a
general requirement for any force structure database. Further, for battle command systems,
every military person entity must have an associated PERST entity to describe the basic
qualifications obtained by the person. Both ORGT and PERSON entities may have SKILLT entities
associated with them, but this is not required. A question that remains is how to divide up the
attributes among the PERST and SKILLT entities.

Every service has a personnel classification system that rigorously defines many attributes. The
concepts of rank (e.g., Master Sergeant or First Sergeant) and grade (e.g., E-8) are
straightforward and grade is consistent across the services.54 Unfortunately, this is not the case
with military occupational data.55 Each service uses different criteria to classify its position
requirements and personnel qualifications. This is accomplished via a wide variety of encoding
schemes, which makes decomposing the attributes into a common schema a difficult task. Even
within a service there are significant variations in the way qualifications and requirements are
encoded for officers versus enlisted personnel.

Consider the encoded position/qualification classification information for US military officers
illustrated in Figure 18. One common characteristic among the services is that they all use
ASCII characters to encode meaning into occupational codes. Further, the sequences of
characters actually represent several different attributes. The values used for the codes yield
little information; consequently, they are meaningful only to knowledgeable experts within the
service. It is rare for anyone to recognize the occupational codes used by another service, let
alone having a comprehensive knowledge of one’s own service’s codes. These examples
illustrate just a few of the different personnel classification elements and encoding schemes used

54 For a list see: http://www.defenselink.mil/pubs/almanac/almanac/people/insignias/
55 For a list of occupational titles and associated coding see:

 Army: https://www.odcsper.army.mil/pamxxi/secured/mosstructure/mos-charts.asp,
 Navy: http://www.navmac.navy.mil/pubs.htm,
 Air Force: http://www.afpc.randolph.af.mil/classification/

 35

http://www.defenselink.mil/pubs/almanac/almanac/people/insignias/
https://www.odcsper.army.mil/pamxxi/secured/mosstructure/mos-charts.asp
http://www.navmac.navy.mil/pubs.htm
http://www.afpc.randolph.af.mil/classification/

ARMY Officer: Classification = “15C35/D7”;
Area of Concentration (AOC): 15C = Aviation All –Source Intelligence;
Functional Area (FA): 35 = Military Intelligence;
Additional Skill Identifier (ASI): D7 = AH-64D Pilot;

AIR FORCE Officer: Classification = “K013B3B/OCE”;
Prefix: K = Instructor;
Air Force Specialty Code (AFSC): 013B3
 013 = Space, Missile, and Command and Control;
 B = Air Battle Manager;
 3 = Aircraft commander qualified (specialty qualification level);
Specialty Shredout or AF Specialty Title: B = AWACS;
Special Experience Identifier (SEI):
 Activity Code: O = Operations;
 Experience Set: CE = Air Surveillance Officer;

NAVY Officer: Classification = “1110/9364/0054T/LF7”;
Designator Code: 1110 = An Unrestricted Line Officer who is qualified in Surface Warfare
Navy Officer Billet Classification (NOBC): 9364 = Ship's Engineer Officer (Gas Turbine)
Subspecialty Code (SSP): 0054 = Naval/Mechanical Engineering;
 T = Training billet which qualifies incumbent for an S-code
 (S = Significant experience).
Additional Qualification Designator (AQD) Code: LF7 = Officer designated as a Tactical
 Action Officer (with NTDS experience) IAW current instructions.

Figure 18: Examples of Officer Classification Schemes

by the different military services. Clearly, the techniques are diverse, but there are several ways
to address this disparity.

One issue is the degree to which the character strings, or the fields they represent, should be
maintained as individual components or simply left as aggregate strings. At one extreme, one
can simply maintain a string of characters and let application programs parse the encoded strings
into usable pieces. Table 1 illustrates how the three service examples of Figure 18 would appear
using this option for occupation code. For each of the service examples, a PERST record has been
created to hold mandatory information and a SKILLT record has been created for a single piece of
optional information. The mandatory information includes rank, grade, and occupation data.

Table 1: The Occupation Attribute as a Single String

PERST SKILLT
 Example

EID Rank Grade Occupation EID Skill

Army 0000000A CPT O-3 15C35 0000000D D7

Air Force 0000000B MAJ O-4 K013B3B 0000000E OCE

Navy 0000000C LCDR O-4 1110/9364 0000000F 0054T/LF7

 36

Because rank and grade have a common meaning across the services, separate attributes for these
characteristics are appropriate. However, occupation codes differ widely across the services, so
one aggregated string is used for this attribute.

Recall that the information in Table 1 is used to describe both the requirements for a position (an
ORGT) and the qualifications of a person. The record with EID 0000000A is a PERST entity that
describes an Army officer of grade O-3 with the “15C35” occupational specialty. The SKILLT
record with the EID 0000000D identifies the Army D7 skill. Because the occupation code is left
as an aggregate set of symbols, the application program must contain the capability to extract the
“15C” code and translate its meaning as an “Aviation All-Source Intelligence” qualified officer.
Likewise, it must translate the “D7” skill code as meaning the ability to pilot an “AH-64D attack
helicopter.” Figure 19 illustrates occupation code aggregation using an IDEF1X representation.

PERSON-TYPE
person-type-eid
person-type-rank-code
person-type-grade-code
person-type-occupation
person-type-remarks-text

SKILL-TYPE
skill-type-eid
skill-type-code
skill-type-description

Figure 19: IDEF1X Representation of Aggregate Occupation Attribute

The primary advantage of this scheme is simplicity. Because the attributes are just character
strings, data are easy exchanged between databases since each service (or country) hides its
information within a collection of coded fields. But there are several disadvantages to this
scheme. First, less usable information is maintained in the database. The applications are tasked
with incorporating the knowledge of the encoding scheme to specify queries and filters. Rigor is
not added to the database model through the enumeration of allowable database values. All these
issues must be handled by the applications.

A second disadvantage to using a single, monolithic attribute is the combinatoric affect caused
by the fact that every usable combination of occupation codes requires a different PERST. This is
because nearly duplicate entries (e.g., two strings with all the characters the same except one) are
different and require a different PERST. Third, because the codes are unfamiliar to the
uninitiated, it may be desirable to include a descriptive title in the PERST entity. However, the
aggregate character strings are composed of a set of concatenated codes, so one cannot
automatically create an associated human readable title other than by concatenating the direct
translations of the codes. For example, if the Army code “15C35/D7” is converted into a title
using code translation and concatenation, one produces the title: “Aviation All–Source
Intelligence, Military Intelligence, AH-64D Pilot.” Developing a more natural description, such
as “MI Qualified AH-64D Pilot,” would require human intervention, which is an undesirably
manpower intensive solution.

Clearly, there are other alternatives to code aggregation. At the other extreme, the strings can be
decomposed into their individual fields and maintained as separate attributes. A more likely

 37

approach will exist somewhere between these extremes. The issues and ramifications of these
decisions are addressed next.

4.2.6 Modeling Options for Personnel Attributes

If code aggregation is not used, the question remains: “In the process of data modeling, to what
level and in what form should one decompose person-type information?” The extreme level of
attribute decomposition is the full normalization of the data to the level of the atomic elements
encoded in the schemes for every agency (e.g., military service). This allows each attribute to be
enumerated so that a lookup table can be created to ensure only valid codes are entered. This
minimizes combinatoric affects, but results in a data model that is more complex with little
attribute reuse. Consider the following syntactic decomposition of the attributes used in the
classification schemes of the Army, Navy, and Air Force (POSCO stands for the common term
“position code”):56

POSCO [20] ::= Army_POSCO | Navy_POSCO | AF_POSCO;

Army_POSCO [5] ::= A_Off_POSCO | A_WO_POSCO | A_Enl_POSCO;
A_Off_POSCO [5] ::= AOC Alt_AOC;

AOC [3] ::= AC Sub_AC | IM_AOC;
Sub_AC [1] ::= alpha[1];
AC [2] ::= BR | FA;

BR [2] ::= num[2];
FA [2] ::= num[2];

IM_AOC [3] ::= ë0í num[1] alpha[1];
Alt_AOC [2] := AC | ì00î;

A_WO_POSCO [5] ::= WO_MOS WO_SQI;
WO_MOS [4] ::= BR Sub_MOS;

Sub_MOS [2] ::= num[1] alpha[1];
WO_SQI [1] ::= alpha_num[1];

A_Enl_POSCO [5] ::= A_ENL_MOS A_ENL_Skill_Lvl ENL_SQI;
A_ENL_MOS [3] ::= CMF Sub_CMF;

CMF [2] ::= num[2];
Sub_CMF [1] ::= alpha[1];

A_ENL_Skill_Lvl [1] ::= num[1];
ENL_SQI [1] = alpha[1];

56 This decomposition uses Backus-Naur Form, or BNF, a common, general format to describe computer languages.

See http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html. The symbol ::= means “is
defined as” and the | symbol denotes “or”. For this example, square brackets are introduced to indicate numbers
of characters.

 38

http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

Navy_POSCO [12] ::= N_Off_POSCO | N_ENL_POSCO;
N_OFF_POSCO [12] ::= N_Desig Pri_NOBC Opt_Sec_NOBC;

N_Desig [4] ::= N_Desig_Cat_Code N_Desig_Suffix;
N_Desig_Cat_Code ::= num[3];
N_Desig_Suffix [1] ::= N_Billet_Suffix | N_Off_Suffix

N_Billet_Suffix [1] ::= num[1]; /* 0,1,2 */
N_Off_Suffix [1] ::= num[1];

Pri_NOBC [4] ::= NOBC;
NOBC [4] ::= num[4];

Opt_Sec_NOBC ::= NOBC | <nil>;
N_ENL_POSCO [11] ::= Rating Pri_NEC Sec_NEC;

Rating [3] ::= alpha[3];
Pri_NEC [4] ::= NEC | <nil>;

NEC [4] ::= num[4];
Sec_NEC [4] ::= NEC | <nil>;

AF_POSCO [7] ::= AF_Off_POSCO | AF_Enl_POSCO;
AF_Off_POSCO [6] ::= AFSC | RI | SDI;

AFSC [6] ::= Opt_Prefix AFSC Opt_Suffix;
Opt_Prefix [1] ::= alpha[1] | <nil>;
AFSC [4] ::= AFS Qual_Lvl;

AFS [3] ::= Career_Grp Utilization_Fld Funct_Area;
Career_Grp [1] ::= num[1];
Utilization_Fld [1] ::= num[1];
Funct_Area [1] ::= alpha[1];

Qual_Lvl [1] ::= num[1];
Opt_Suffix [1] ::= alpha[1] | <nil>;

RI [4] ::= alphanum[4];
SDI [4] ::= alphanum[4];

AF_Enl_POSCO [7] ::= Opt_Prefix EAFSC Opt_Suffix
EAFSC [5] ::= EAFS Skill_Lvl Specific_EAFS;

EAFS [3] ::= Career_Grp Career_Fld CF_Sub;
Career_Fld [1] ::= alpha[1];
CF_Sub [1] ::= num[1];

Skill_Lvl [1] ::= num[1];
Specific_EAFS [1] ::= num[1] | <nil>;

This BNF example expands each encoded string down to its atomic elements. This activity is
analogous to using the IDEF1X modeling process to build a generalization hierarchy of the
PERST and SKILLT entities. This is illustrated in Figure 20 for a few levels of a hierarchy for
an Army slice of the domain.

Because each service has different rules and vernacular regarding the personnel classification
process, there are very few common attributes. In a generalization hierarchy, this is revealed by
the absence of attributes in the intermediate hierarchies that are shared among the services. This
exemplifies the challenge of obtaining agreements for a common set of attributes caused by the
differences in the way the services describe personnel requirements and qualification.

As other organizations (or countries) add their definitions, the problem rapidly increases. This is
because the table structure incorporates the attribute names. A change in a name requires a

 39

us-army-person-type-category-code

USA-ENLISTED-PERSON-TYPE
us-army-person-type-eid (FK)

USA-Enlisted-MOS
USA-Enlisted_MOS-Title
USA-Enlisted-Skill-Level
USA-Enlisted-SQI
USA-Enlisted_SQI-Title

USA-WO-PERSON-TYPE
us-army-person-type-eid (FK)

USA-WO-MOS
USA-WO-MOS-Title
USA-WO-SQI
USA-WO-SQI-Title

USA-OFFICER-PERSON-TYPE
usa-officer-person-type-eid (FK)

USA-Officer-AOC
USA-Officer-AOC-Title
USA-Officer-Functional-Area
USA-Officer-FA-Title

person-type-category-code

US-ARMY-PERSON-TYPE
us-army-person-type-eid (FK)

us-army-person-type-category-code

SKILL-TYPE
skill-type-eid

skill-type-category-code
skill-type-title
skill-type-description

PERSON-TYPE
person-type-eid (FK)

person-type-category-code
person-type-rank-code
person-type-grade-code
person-type-gender-code
person-type-remarks-text

USAF-PERSON-TYPE
usaf-person-type-eid (FK)

US-NAVY-PERSON-TYPE
us-navy-person-type-eid (FK)

US-ARMY-SKILL-TYPE
us-army-skill-type-eid (FK)

Officer-Additional-Skill-Identifier
WO-Additional-Skill-Identifier
Enlisted-Additional-Skill-Identifier
Remark

US-NAVY-SKILL-TYPE
us-navy-skill-type-eid (FK)

Officer-Subspecialty-Code
Officer-Additonal-Qualification-Designation-Code
Remark

USAF-SKILL-TYPE
usaf-skill-type-eid (FK)

Officer-Special-Experience-Identifier
Enlisted-Special-Experience-Identifier
Chief-Enlisted-Manager-Code
Remark

skill-type-category-code

Figure 20: IDEF1X Representation of Decomposed Attributes

change to the database table structure. This is in contrast to the previous approach in which all
the attribute information was maintained in the application programs. Clearly, the diversity of
the person-type domain when using this approach (i.e., where every different personnel attribute
has its own database table attribute) causes pragmatic issues in dealing with maintenance and
change management.

It is advantageous to find a compromise between the two extreme modeling methods presented
thus far (character strings and generalization hierarchies). On one hand, it is advantageous to
identify a general technique so that several parties can use the same attribute to store its encoding
schemes. This facilitates the easy exchange of data between database systems and allows new
participants to quickly join a consortium. When the codes are treated as simple ASCII text
strings, new participants can enter their data about their person-types immediately. However,
because a common semantics is not shared, the encoding schemes are only useful to those that
understand them. Decoding must be accomplished either by the reader of the strings, or by
application programs that have a knowledge of the encoding scheme incorporated within them.
One could easily argue that this provides only marginal improvement in interoperability because
the task was merely moved from the data model to the application.

It is desirable to make PERST information meaningful and useful to both experts and generalists
alike. The distinction between expert and generalists not only refers to being inside and outside

 40

the personnel community, but also across personnel communities. For example, being a
personnel expert in the U.S. Army (and thus knowing its encoding schemes) infers no familiarity
with the U.S. Air Force, or any other, encoding scheme. A simple way to provide more useful
information is to add descriptive text to the encoded text in the data model. In other words, to
use two attributes — one to store encoded strings for those people and applications with the
ability to interpret them, and another to provide generalists with descriptive information.

A challenge in incorporating these additional attributes is the automation of their insertion and
maintenance. One does not want to create yet another set of attributes for humans to maintain.
Therefore, it is advantageous to use existing data to create the set of entities to be transferred to
battle command systems. The problem encountered is that the descriptive text desired is
associated one-to-one with the atomic elements of the encoded strings, not with the string as a
whole. There is no text associated with an aggregate code. For example, as illustrated
previously, the Army code “15D31/D7” is actually a set of three codes, 15D, 31, and D7, for
which each has an associated text description. There is no description for the aggregated set of
all three. Therefore, one is restricted to developing a scheme that uses the atomic attributes in
some manner. The challenge is to create a simple approach that is easy to use and maintain.

One technique to consider is using generic attributes to store descriptive names of specific
personnel attributes. This is contrary to the technique illustrated in Figure 20 where a separate
entity is used to contain the attribute names corresponding to each encoding scheme. Figure 21
illustrates this generic case. Instead of having attributes named “rank” and “grade,” these
attribute names are entered as data in a generic attribute called “attribute name.” For the expert,
an attribute called “attribute code” is provided, and for the uninitiated, two attributes called
“attribute text” and “attribute-remark” are provided. For example, to find all the rank codes for
the U.S. Army, one would execute a query on the attribute “person-type-attribute-name” with a
value equal to the character string “US Army Rank.”

This technique, called generic attributes for this discussion, converts each attribute from a
column of a table into rows of a table. The advantage of this approach is its simplicity and
flexibility. It allows as many or few attributes as required to be associated with an ORGT or
PERS. It also allows easy insertion or deletion of new attributes without modifying the database

person-type-eidperson-type-eid

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-attribute-remark

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-attribute-remark

PERSON-TYPE

0D000000000000060D00000000000006

US Army Rank
SSG
Staff Sergeant

US Army Rank
SSG
Staff Sergeant

person-type-eidperson-type-eid

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-attribute-remark

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-attribute-remark

PERSON-TYPE

0E000000000000050E00000000000005

DOD Pay-Grade
E-6

DOD Pay-Grade
E-6

person-type-eidperson-type-eid

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-attribute-remark

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-attribute-remark

PERSON-TYPE

0D000000000000170D00000000000017

US Navy Rating
FC2
Fire Controlman Second Class
Petty Officer Second Class

US Navy Rating
FC2
Fire Controlman Second Class
Petty Officer Second Class

Figure 21: Generic Attributes in Entity

 41

structure. Further, it allows one to remove the SKILLT entity since the PERST entity can easily
perform the role of both. If the mandatory versus optional characteristic of PERST versus SKILLT
is required, then this distinction can be accomplished via another generic attribute, say “person-
type-attribute-status.” The disadvantage of this approach is that the attribute name provides no
additional information to the user about the data. For example, the structure provides no hint that
the term “rating” in the Navy has a corresponding meaning to “rank” in the Army. Only by
recognizing that all Navy ratings and Army ranks also have a common, sibling attribute named
“grade,” would one be able to infer this useful fact.

An alternative technique is to incorporate limited bundling of attributes into entities. In this case,
the distinction between mandatory PERST and optional SKILLT entities can be maintained. The
size of the bundle must be decided and it can easily be increased over time. A cursory analysis
of Army, Navy, and Air Force attributes resulted in the initial set of attributes illustrated in
Figure 22 (with examples from Army and Navy enlisted manpower documents).

person-type-eidperson-type-eid

person-type-rank-code
person-type-pay-grade-code
person-type-primary occupation-code-name
person-type-primary-occupation-code
person-type-primary-occupation-text
person-type-secondary occupation-code-name
person-type-secondary-occupation-code
person-type-secondary-occupation-text
person-type-skill-level
person-type-remarks-text

person-type-rank-code
person-type-pay-grade-code
person-type-primary occupation-code-name
person-type-primary-occupation-code
person-type-primary-occupation-text
person-type-secondary occupation-code-name
person-type-secondary-occupation-code
person-type-secondary-occupation-text
person-type-skill-level
person-type-remarks-text

PERSON-TYPE

0D000000000000010D00000000000001

SSG (Staff Sergeant)
E-6
USA Enlisted MOS Prefix
11M
Fighting Vehicle Infantryman
USA Enlisted SQI
G
Ranger
3
-

SSG (Staff Sergeant)
E-6
USA Enlisted MOS Prefix
11M
Fighting Vehicle Infantryman
USA Enlisted SQI
G
Ranger
3
-

0D000000000000100D00000000000010

FC2 (Fire Controlman Second Class)
E-6
US NEC
1169
HARPOON (AN/SWG-1A) Maintenance Technician
US NEC
9595
Hazardous Material Control Management Technician
-
-

FC2 (Fire Controlman Second Class)
E-6
US NEC
1169
HARPOON (AN/SWG-1A) Maintenance Technician
US NEC
9595
Hazardous Material Control Management Technician
-
-

Figure 22: Bundling Attributes into Entities

In this example, three principle categories of attributes are used: rank and grade, primary and
secondary occupational information, and skill-level. These were chosen based upon a quick
study of Army, Navy, and Air Force manpower documents.57 All three services had these
categories in their manpower documents. Foreign military services were not studied.

This technique, called bundled attributes, has two desirable features over unbundled, generic
attributes. First, several, common, personnel attributes are conveniently bundled into a single
entity. Second, the attributes are provided names with some additional meaning. They are not
specific like those in the generalization hierarchy, but they are not void of information like
generic attributes. In other words, they are a compromise. This allows a user to compare values
across domains based upon the meaning inferred from a common attribute name (e.g., “primary
occupation”). For example, it may be inferred that the enlisted military occupational specialty,
or MOS, in the Army serves roughly the same purpose as the Navy Enlisted Classifications, or
NEC, in the Navy. Further, both code and text fields are available for use by experts and
generalists. A person knowledgeable in Army personnel techniques can easily compose an
Army position code (POSCO) by combining three of the attributes – for example, the POSCO
11M3G.

57 Army MTOE, Navy SMD (Ship Manpower Document), and Air Force UMD (Unit Manpower Document).

 42

The corresponding disadvantage is the reduction in flexibility and increase in redundancy. For
example, the word “rank” in the attribute “person-type-rank-code” is used generically. The only
way one would know that the term is actually “rating” in the Navy (not rank) is by adding a
comment in the remarks field. Further, if a third occupational specialty were required, another
set of attributes would have to be added to the entity. Finally, some denormalization is
introduced. For example, the value for pay-grade (e.g., E-6) is included in every entity instead of
having a single entity for pay-grade that everyone uses.

Notice that the earlier distinction between PERST (for mandatory attributes) and SKILLT (for
optional attributes) can be retained using this approach. The SKILLT entity provides the
flexibility and simplicity offered using generic attributes while the PERST offers the advantages
of using bundled attributes. Also recall that there is a one-to-one mapping to a PERST while any
number of SKILLT entities can be associated with an ORGT or PERS. This allows both general and
specific requirements (or qualifications) to be defined and used across entity boundaries. This
combination of PERST and SKILLT is illustrated in Figure 23. This SKILLT entity is used to
identify positions that are restricted to the male gender and can be used for any position (ORGT)
in the database, regardless of service or country.

person-type-eidperson-type-eid

person-type-rank-code
person-type-pay-grade-code
person-type-primary occupation-code-name
person-type-primary-occupation-code
person-type-primary-occupation-text
person-type-secondary occupation-code-name
person-type-secondary-occupation-code
person-type-secondary-occupation-text
person-type-skill-level
person-type-remarks-text

person-type-rank-code
person-type-pay-grade-code
person-type-primary occupation-code-name
person-type-primary-occupation-code
person-type-primary-occupation-text
person-type-secondary occupation-code-name
person-type-secondary-occupation-code
person-type-secondary-occupation-text
person-type-skill-level
person-type-remarks-text

PERSON-TYPE

0D000000000000010D00000000000001

SSG (Staff Sergeant)
E-6
USA Enlisted MOS Prefix
11M
Fighting Vehicle Infantryman
USA Enlisted SQI
G
Ranger
3
-

SSG (Staff Sergeant)
E-6
USA Enlisted MOS Prefix
11M
Fighting Vehicle Infantryman
USA Enlisted SQI
G
Ranger
3
-

skill-type-eidskill-type-eid

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

SKILL-TYPE

0F000000000000040F00000000000004

Gender Restriction
M
Closed to Women

Gender Restriction
M
Closed to Women

Alternatively, SQI can be
implemented as a SKILLT
(optional attribute)

Figure 23: Generic Skill-Type With Bundled Person-Type

4.2.7 Using EIDs to Add Flexibility to Associations

As with any relational database systems, relationships between entities are established using
association tables. A primary advantage of EIDs is the simplicity and flexibility they provide
when implementing physical database tables. Because all EIDs are the same size and format, a
single format can be used to maintain many different types of associations. Figure 24
demonstrates the use of association tables with entities that use generic attributes. In typical
relational style, there is a separate association table for each distinct pair of entities. In this
example, there is one association table to relate ORGT with PERST and another to relate ORGT
with SKILLT. Note that the association table may be composed of only EIDs.

By using generic attributes, each row of the PERST and SKILLT table contains a single
characteristic. There is an entry in the association table for each appropriate characteristic. The
fact that PERST attributes are mandatory and SKILLT attributes are optional is buried in the
business rules that describe these entities. To obtain the mandatory attributes for the ORGT
Platoon Leader, tagged with EID 0E000000000000FF, an application program would execute a
query on the ORGANIZATION-TYPE-PERSON-TYPE-ASSCOCIATION table for all rows that contain

 43

organization-type-eidorganization-type-eid

country-code
organization-type-service
organization-type-name
organization-type-echelon-code
organization-type-arm-code

country-code
organization-type-service
organization-type-name
organization-type-echelon-code
organization-type-arm-code

ORGANIZATION-TYPE

0E000000000000FF0E000000000000FF

USA
US Army
Platoon Leader
Position
Infantry

USA
US Army
Platoon Leader
Position
Infantry

skill-type-eidskill-type-eid

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

SKILL-TYPE

0F000000000000040F00000000000004

Addition Skill Identifier (ASI)
3X
M2/M3 Bradley IFV/CFV

Addition Skill Identifier (ASI)
3X
M2/M3 Bradley IFV/CFV

0F000000000000050F00000000000005

Addition Skill Identifier (ASI)
5Q
Pathfinder Qualified

Addition Skill Identifier (ASI)
5Q
Pathfinder Qualified

0F000000000000060F00000000000006

Gender Restriction
M
Closed to Women

Gender Restriction
M
Closed to Women

orgt-skillt-assoc-eidorgt-skillt-assoc-eid

organization-type
skill-type

organization-type
skill-type

ORGANIZATION-TYPE-SKILL-TYPE-ASSOC

0D000000000020020D00000000002002

0E000000000000FF
0F00000000000004

0E000000000000FF
0F00000000000004

0D000000000020020D00000000002002

0E000000000000FF
0F00000000000005

0E000000000000FF
0F00000000000005

0D000000000020040D00000000002004

0E000000000000FF
0F00000000000006

0E000000000000FF
0F00000000000006

person-type-eidperson-type-eid

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-attribute-remark

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-attribute-remark

PERSON-TYPE

0D000000000000010D00000000000001

US Army Rank
1LT
First Lieutenant

US Army Rank
1LT
First Lieutenant

0E0000000000000C0E0000000000000C

DOD Pay-Grade
O-2

DOD Pay-Grade
O-2

0D000000000000020D00000000000002

USA Officer AOC
11A
Infantry

USA Officer AOC
11A
Infantry

0D000000000000030D00000000000003

USA Officer Secondary AOC/FA
00
None Assigned

USA Officer Secondary AOC/FA
00
None Assigned

orgt-perst-assoc-eidorgt-perst-assoc-eid

organization-type
person-type

organization-type
person-type

ORGANIZATION-TYPE-PERSON-TYPE-ASSOC

0D000000000030010D00000000003001

0E000000000000FF
0D00000000000001

0E000000000000FF
0D00000000000001

0D000000000030020D00000000003002

0E000000000000FF
0E0000000000000C

0E000000000000FF
0E0000000000000C

0D000000000030030D00000000003003

0E000000000000FF
0D00000000000002

0E000000000000FF
0D00000000000002

0D000000000030040D00000000003004

0E000000000000FF
0D00000000000003

0E000000000000FF
0D00000000000003

Figure 24: Association Tables with Generic Attributes

that EID in the organization-type field. To obtain the optional attributes, a similar query is
executed on the ORGANIZATION-TYPE-PERSON-TYPE-ASSCOCIATION table.

This illustrates the unwarranted use of both a PERST and SKILLT table when using generic
attributes because they are identical in structure. The only distinction is the definition that PERST
attributes are mandatory and SKILLT attributes are optional. By adding a new generic attribute to
the PERST entity called “person-type-category” to contain the mandatory/optional distinction, the
SKILLT entity can be eliminated. As illustrated in Figure 25, this action simplifies the data model
by reducing the attribute and association tables to one each.

Bundled attributes represent a compromise between the extremes of generic attributes and full
generalization hierarchies. Figure 26 illustrates the same example as Figure 24, but using a
PERST entities composed of bundled attributes. For many people, this portrays a more familiar
approach for the PERST entity. As in Figure 24, two attribute and association tables are required.
The PERST entity contains mandatory attributes and the SKILLT entity continues to utilize generic
attributes to define the optional attributes. However, the names used for the bundled attributes in
the PERST entity now include a limited description of the type of information stored in the
attribute. In Figure 26, four classes of information that are common and often mandatory across
the U.S. military services are included: rank and grade, primary and secondary occupational

 44

organization-type-eidorganization-type-eid

country-code
organization-type-service
organization-type-name
organization-type-echelon-code
organization-type-arm-code

country-code
organization-type-service
organization-type-name
organization-type-echelon-code
organization-type-arm-code

ORGANIZATION-TYPE

0E000000000000FF0E000000000000FF

USA
US Army
Platoon Leader
Position
Infantry

USA
US Army
Platoon Leader
Position
Infantry

person-type-eidperson-type-eid

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-category
person-type-attribute-remark

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-category
person-type-attribute-remark

PERSON-TYPE

0F000000000000040F00000000000004

Addition Skill Identifier (ASI)
3X
M2/M3 Bradley IFV/CFV
Optional

Addition Skill Identifier (ASI)
3X
M2/M3 Bradley IFV/CFV
Optional

0F000000000000050F00000000000005

Addition Skill Identifier (ASI)
5Q
Pathfinder Qualified
Optional

Addition Skill Identifier (ASI)
5Q
Pathfinder Qualified
Optional

0F000000000000060F00000000000006

Gender Restriction
M
Closed to Women
Optional

Gender Restriction
M
Closed to Women
Optional

person-type-eidperson-type-eid

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-category
person-type-attribute-remark

person-type-attribute-name
person-type-attribute-code
person-type-attribute-text
person-type-category
person-type-attribute-remark

PERSON-TYPE

0D000000000000010D00000000000001

US Army Rank
CPT
Captain
Mandatory

US Army Rank
CPT
Captain
Mandatory

0E0000000000000C0E0000000000000C

DOD Pay-Grade
O-3

Mandatory

DOD Pay-Grade
O-3

Mandatory

0D000000000000020D00000000000002

Primary US AOC
15C
Aviation All–Source Intelligence
Mandatory

Primary US AOC
15C
Aviation All–Source Intelligence
Mandatory

0D000000000000030D00000000000003

Secondary US AOC/FA
35
Military Intelligence
Mandatory

Secondary US AOC/FA
35
Military Intelligence
Mandatory

orgt-perst-assoc-eid

organization-type
person-type

0D00000000003001

0E000000000000FF
0D00000000000001

0D00000000003002

0E000000000000FF
0E0000000000000C

0D00000000003003

0E000000000000FF
0D00000000000002

0D00000000003004

0E000000000000FF
0D00000000000003

orgt-perst-assoc-eid

organization-type
person-type

0D00000000002002

0E000000000000FF
0F00000000000004

0D00000000002002

0E000000000000FF
0F00000000000005

0D00000000002004

0E000000000000FF
0F00000000000006

ORGANIZATION-TYPE-PERSON-TYPE-ASSOC

Figure 25: Using a Single Entity for Generic Attributes

specialty, skill-level, and a remarks field. Although some fields may be null, this approach
provides the most used information in a single entity.

A drawback with bundling attributes is a reduction in normalization. When attributes are
bundled, they may appear in many entities. In this example, all of the values in the fields of the
PERST entity will appear in different combination in many other entities. If any of these values
change, a global query will have to be executed to find all the instances that use the value so that
it can be consistently and uniformly modified. This, of course, is a primary reason behind
normalization; to ease maintenance, a specific piece of data exists in only one place in the
database.

A simple way to alleviate this problem is to place all personnel attributes in tables and refer to
them via their EIDs. An ideal choice is the SKILLT table, which allows all the personnel related
attributes to reside in a single table to facilitate maintenance. This approach, called bundled
skill-types, is illustrated in Figure 27, which uses the same example provided in Figure 26. The
two SKILL-TYPE tables in the diagram represent different portions of the same table. Bundling
SKILLTs simplifies the data schema is several ways. First, all the personnel descriptions can be
found in a single table with common, generic attributes to maximize reuse. Second, the number
of attributes of the PERST entity is reduced to the fundamental categories of rank and grade,
primary and secondary occupation, and skill-level. Finally, there are no mandatory or optional

 45

person-type-eidperson-type-eid

person-type-rank-code
person-type-pay-grade-code
person-type-primary-occupation-code-name
person-type-primary-occupation-code
person-type-primary-occupation-text
person-type-secondary-occupation-code-name
person-type-secondary-occupation-code
person-type-secondary-occupation-text
person-type-skill-level
person-type-remarks-text

person-type-rank-code
person-type-pay-grade-code
person-type-primary-occupation-code-name
person-type-primary-occupation-code
person-type-primary-occupation-text
person-type-secondary-occupation-code-name
person-type-secondary-occupation-code
person-type-secondary-occupation-text
person-type-skill-level
person-type-remarks-text

PERSON-TYPE

0D000000000000010D00000000000001

1LT (First Lieutenant)
O-2
USA Officer AOC
11A
Infantry
USA Officer AOC
00
None Assigned
-
-

1LT (First Lieutenant)
O-2
USA Officer AOC
11A
Infantry
USA Officer AOC
00
None Assigned
-
-

organization-type-eidorganization-type-eid

country-code
organization-type-service
organization-type-name
organization-type-echelon-code
organization-type-arm-code

country-code
organization-type-service
organization-type-name
organization-type-echelon-code
organization-type-arm-code

ORGANIZATION-TYPE

0B000000000000FF0B000000000000FF

USA
US Army
Platoon Leader
Position
Infantry

USA
US Army
Platoon Leader
Position
Infantry

orgt-perst-assoc-eidorgt-perst-assoc-eid

organization-type
assoc-person-type
orgt-perst-required-quantity
orgt-perst-authorized-quantity

organization-type
assoc-person-type
orgt-perst-required-quantity
orgt-perst-authorized-quantity

ORGANIZATION-TYPE-PERSON-TYPE-ASSOC

0D000000000020010D00000000002001

0E000000000000FF
0D00000000000001
1
1

0E000000000000FF
0D00000000000001
1
1

skill-type-eidskill-type-eid

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

SKILL-TYPE

0F000000000000040F00000000000004

Addition Skill Identifier (ASI)
3X
M2/M3 Bradley IFV/CFV

Addition Skill Identifier (ASI)
3X
M2/M3 Bradley IFV/CFV

0F000000000000050F00000000000005

Addition Skill Identifier (ASI)
5Q
Pathfinder Qualified

Addition Skill Identifier (ASI)
5Q
Pathfinder Qualified

0F000000000000060F00000000000006

Gender Restriction
M
Closed to Women

Gender Restriction
M
Closed to Women

orgt-skillt-asoc-eidorgt-skillt-asoc-eid

organization-type
assoc-skill-type

organization-type
assoc-skill-type

ORGANIZATION-TYPE-SKILL-TYPE-ASSOC

0D000000000020020D00000000002002

0E000000000000FF
0F00000000000004

0E000000000000FF
0F00000000000004

0D000000000020020D00000000002002

0E000000000000FF
0F00000000000005

0E000000000000FF
0F00000000000005

0D000000000020040D00000000002004

0E000000000000FF
0F00000000000006

0E000000000000FF
0F00000000000006

Figure 26: Bundled Attributes and Association Table

personnel attributes. In essence, mandatory personnel attributes are those SKILLTs that are
referred to within the PERST entity.

Two association tables still exist to relate SKILLTs with ORGTs: one for direct associations (the
ORGANIZATION-TYPE-SKILL-TYPE-ASSOC table), and one to link the bundled SKILLTs via the
PERST entity (ORGANIZATION-TYPE-PERSON-TYPE-ASSOC table). This means that, technically,
one does not need to use the PERST entity under this approach. However, the purpose of the
PERST entity is to add information about the personnel attributes commonly used across service
boundaries so that comparisons can be made between them (e.g., service rank codes). Therefore,
it is likely that entries will exist in both association tables to define the required qualifications for
a position. The personnel attributed called mandatory are maintained via the PERST entity while
those that were called optional are maintained via a direct relationship.

Thus far, the discussion of personnel data has assumed the special case of an association with a
single person or position. Every PERSON entity that represents a military service member and
every ORGT entity that represents a position must have a single PERST entity associated with it.
This is how descriptions of personnel qualifications are maintained. However, this is not the
general case for ORGT entities. Positions are just one of the three categories of ORGTs, the other
two being crew/platform and doctrinal ORGTs. In these cases, it may be required to maintain

 46

person-type-eidperson-type-eid

person-type-rank
person-type-pay-grade
person-type-primary-occupation
person-type-secondary-occupation
person-type-skill-level
person-type-remarks-text

person-type-rank
person-type-pay-grade
person-type-primary-occupation
person-type-secondary-occupation
person-type-skill-level
person-type-remarks-text

PERSON-TYPE

0D000000000000010D00000000000001

0F00000000000001
0E0000000000000C
0D00000000000002
0D00000000000003
-
-

0F00000000000001
0E0000000000000C
0D00000000000002
0D00000000000003
-
-

organization-type-eidorganization-type-eid

country-code
organization-type-service
organization-type-name
organization-type-echelon-code
organization-type-arm-code

country-code
organization-type-service
organization-type-name
organization-type-echelon-code
organization-type-arm-code

ORGANIZATION-TYPE

0B000000000000FF0B000000000000FF

USA
US Army
Platoon Leader
Position
Infantry

USA
US Army
Platoon Leader
Position
Infantry

orgt-perst-assoc-eidorgt-perst-assoc-eid

organization-type
assoc-person-type
orgt-perst-required-quantity
orgt-perst-authorized-quantity

organization-type
assoc-person-type
orgt-perst-required-quantity
orgt-perst-authorized-quantity

ORGANIZATION-TYPE-PERSON-TYPE-ASSOC

0D000000000020010D00000000002001

0E000000000000FF
0D00000000000001
1
1

0E000000000000FF
0D00000000000001
1
1

skill-type-eidskill-type-eid

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

SKILL-TYPE

0F000000000000040F00000000000004

Addition Skill Identifier (ASI)
3X
M2/M3 Bradley IFV/CFV

Addition Skill Identifier (ASI)
3X
M2/M3 Bradley IFV/CFV

0F000000000000050F00000000000005

Addition Skill Identifier (ASI)
5Q
Pathfinder Qualified

Addition Skill Identifier (ASI)
5Q
Pathfinder Qualified

0F000000000000060F00000000000006

Gender Restriction
M
Closed to Women

Gender Restriction
M
Closed to Women

orgt-skillt-assoc-eidorgt-skillt-assoc-eid

organization-type
assoc-skill-type

organization-type
assoc-skill-type

ORGANIZATION-TYPE-SKILL-TYPE-ASSOC

0D000000000020020D00000000002002

0E000000000000FF
0F00000000000004

0E000000000000FF
0F00000000000004

0D000000000020020D00000000002002

0E000000000000FF
0F00000000000005

0E000000000000FF
0F00000000000005

0D000000000020040D00000000002004

0E000000000000FF
0F00000000000006

0E000000000000FF
0F00000000000006

person-type-eidperson-type-eid

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

SKILL-TYPE

0F000000000000010F00000000000001

US Army Rank
1LT
First Lieutenant

US Army Rank
1LT
First Lieutenant

0E0000000000000C0E0000000000000C

DOD Pay-Grade
O-2

DOD Pay-Grade
O-2

0D000000000000020D00000000000002

USA Officer AOC
11A
Infantry

USA Officer AOC
11A
Infantry

0D000000000000030D00000000000003

USA Officer AOC
00
Non-Assigned

USA Officer AOC
00
Non-Assigned

Figure 27: Bundled Skill-Types

lower resolution, aggregate information about PERST data often called a “roll-up.” An example
might be the number of E-6/11M30 infantrymen that are in a rifle company.

In Figure 26 and Figure 27, the ORGANIZATION-TYPE-PERSON-TYPE-ASSOC table includes two
quantity attributes, one for a required quantity and one for an authorized quantity.58 Thus far,
the ORGT has always been a position, so the quantity has been one. However, one could
maintain the personnel requirement data at any resolution, and this is required in several battle
management system data models.

In Figure 28, a US Army rifle platoon is selected as the echelon level of ORGT resolution and the
associated person-type information is listed for this case. The platoon is composed of 32 soldiers
(and their equipment) and reflects eleven different categories of requirements; that is, eleven
different PERST/SKILLT combinations.

58 This reflects the Army approach to force structure documentation. Although the quantity authorized usually

equals the quantity required, this does have to be the case due to fiscal considerations.

 47

Rifle Platoon (an ORGT):
 Line # PERST / SKILLT
 [1] 1 x O-2 11A00/3X,5R where 3X = BIFV; 5R = Ranger
 [2] 1 x E-7 11M40/F7 where F7 = Pathfinder
 [3] 2 x E-6 11M30/J3 where J3 = BIFV Master Gunner
 [4] 1 x E-6 11M30
 [5] 1 x E-6 11M3G
 [6] 2 x E-5 11M2G
 [7] 4 x E-5 11M2O
 [8] 15 x E-4 11M1O
 [9] 1 x E-3 11M1O
 [10] 3 x E-3 11M1O/C2: where C2 = Dragon Gunner
 [11] 1 x E-3 11M1O/B4: where B4 = Sniper

Figure 28: Personnel Data Maintained at Resolutions Lower than Position

In this example, the eighth line indicates that there is a requirement for fifteen soldiers of grade
E-4 with the qualification code of 11M10. There is no indication of the positions within the
platoon that the people with these qualifications occupy. This is an example of aggregated
PERST requirements at the platoon level of detail.

The capability to describe personnel (and materiel) requirements at any resolution has been
provided via the concept of “establishment” that was originally defined in the Generic Hub (GH)
data model (see footnote 18, pg 11). Establishments allow composition information about
ORGTs to be defined at any resolution when the attributes are bundled (e.g., using PERST). Figure
29 illustrates the ORGT establishment view from the LC2IEDM, a derivative of the GH that has
been modified to use EIDs. An ORGT may have several establishments (i.e., variants), each with
a set of “detail” entities that define the quantity and type of subordinate organizations, equipment
(i.e., materiel-type), and person-types. In this model, PERSON-TYPE has only two bundled
attributes: “person-type-category-code” and “person-type-rank-code.”

If the LC2IEDM were used to represent the information in Figure 28, each of the eleven lines
would be implemented as a person-type59 entity with a corresponding ORGANIZATION-TYPE-
ESTABLISHMENT-PERSON-TYPE-DETAIL entity that contains a quantity value and the means to
associate the PERSON-TYPE with the ORGANIZATION-TYPE-ESTABLISHMENT entity representing
the “Rifle Platoon.”

This configuration presents problems for both the generic and bundled attributes schemes
presented thus far. The generic attribute scheme (Figure 24 and Figure 25) offers complete
flexibility, but only allows the case when the ORGT is a position. There are no quantifiers in the
association tables because each PERST (or SKILLT) represents a single qualifying characteristic
and there is no way to assemble them into groups.60 In these cases, the only valid quantifier is

59 Actually, to be consistent with this report, the person-type would have to include skill-type information.
60 Recall that the reason for breaking the attributes into individual characteristics is to avoid a combinatoric affect.

One can always assemble all possible, required combinations of generic attributes into individual PERSTs and
accept the data management challenge of tracking all the different combinations of attributes.

 48

is-specified-throughis-specified-through

is-specified-through

is-specified-as-part-of

is-made-up-through

is-specified-as-part-of

is-specified-as-part-of

object-type-category-code

PERSON-TYPE
person-type-eid (FK)

person-type-category-code
person-type-rank-code

ORGANISATION-TYPE
organisation-type-eid (FK)

organisation-type-category-code

MATERIEL-TYPE
materiel-type-eid (FK)

materiel-type-category-code
materiel-type-stock-number-text

ORGANISATION-TYPE-ESTABLISHMENT
organisation-type-establishment-eid

established-organisation-type-eid (FK)
organisation-type-establishment-effective-date
organisation-type-establishment-environment-condition-code
organisation-type-establishment-name
organisation-type-establishment-operational-mode-code

ORGANISATION-TYPE-ESTABLISHMENT-ORGANISATION-TYPE-DETAIL
organisation-type-establishment-organisation-type-detail-eid

organisation-type-establishment-eid (FK)
detail-organisation-type-eid (FK)
organisation-type-establishment-organisation-type-detail-quantity

ORGANISATION-TYPE-ESTABLISHMENT-MATERIEL-TYPE-DETAIL
organisation-type-establishment-materiel-type-detail-eid

organisation-type-establishment-materiel-type-detail-materiel-type-eid (FK)
organisation-type-establishment-eid (FK)
organisation-type-establishment-materiel-type-detail-quantity

ORGANISATION-TYPE-ESTABLISHMENT-PERSON-TYPE-DETAIL
organisation-type-establishment-person-type-detail-eid

detail-person-type-eid (FK)
organisation-type-establishment-eid (FK)
organisation-type-establishment-person-type-detail-quantity

OBJECT-TYPE
object-type-eid

object-type-category-code
object-type-dummy-indicator-code
object-type-name
object-type-nationality-code

Figure 29: LC2IEDM Establishment (Modified for EIDs)

one. As a result, when using generic attributes there is no way to represent aggregate personnel
information. In Figure 28, lines 9-11 would each be represented by the same PERST, the bundle
of attributes indicating a soldier of grade E-3 with MOS 11M10. However, because of the
different ASIs (e.g., C2, B3, etc.) these are three different qualifications.

One apparent solution is to associate a PERST entity with the optional SKILLT entities. However,
this logic is incorrect because any association would indicate a universal relationship thus linking
together all instances of these two entities; for example, the 11M1O MOS and the C2 ASI. Once
this association is established, there is no way to distinguish between an 11M1O and an
11M1O/C2 entity. To achieve distinction, one must create variants of the 11M10 PERST, which
causes a combinatoric expansion and defeats the original purpose of the limited bundling of
attributes. So this technique does not offer an advantage.

However, there is a solution to this aggregation problem without submitting to the unacceptable
combinatorial ramifications caused by building PERST entities for all required combinations of
optional personnel attributes. The aggregation problem is caused by the choice to optimally
manage personnel attributes at the individual level rather than at the aggregate (upper echelon)
level. This choice is made because the individual level is exceedingly the most abundant (more
than 80% of the ORG and ORGT entities will refer to positions and billets) and it is highly
advantageous to be able to manage resources at the individual person level. Therefore, the

 49

aggregation of personnel attributes must be handled as derived data. Aggregation can be
achieved by first grouping the position level ORGT data, and then filtering the associated PERST
attributes. In other words, one executes aggregation by rolling up the ORGTs, not the PERSTs.
This approach is illustrated in Figure 30, which mimics the technique used in the Army MTOE
for displaying personnel information.

Rifle Platoon (ORGT):
 Line ORGT PERST /SKILLT
 [1] 1 x Platoon Leader O-2 11A00 /
 [2] /3X
 [3] /5R
 [4] 1 x Platoon Sergeant E-7 11M40 /
 [5] /F7
 [6] 2 x Section Leader E-6 11M30 /
 [7] /J3
 [8] 1 x Squad Leader E-6 11M3O
 [9] 1 x Squad Leader E-6 11M3G
 [10] 2 x Senior Gunners E-5 11M2O
 [11] 2 x Team Leader E-5 11M2O
 [12] 2 x Team Leader E-5 11M2G
 [13] 3 x Gunners E-4 11M1O
 [14] 4 x BIFV Drivers E-4 11M1O
 [15] 6 x Automatic Rifleman E-4 11M1O
 [16] 2 x Grenadier E-4 11M1O
 [17] 1 x Radiotelephone Operator E-3 11M1O
 [18] 3 x AntiArmor Specialists E-3 11M1O
 [19] /C2
 [20] 1 x Rifleman E-3 11M1O
 [21] /B4

Figure 30: Aggregate Personnel Information Accessed Via ORGT Associations

In this example, the person-type information is collected by first amassing the ORGT positions
that form the leaves of the ORGT tree rooted at the desired echelon of aggregation, in this case,
the platoon. The left columns list the number and name of the positions that are subordinate to
the platoon. To the right of the position are the personnel attributes associated with that position.
In this example, the structure reflects the scheme of using bundled attributes for mandatory fields
via PERST entities and generic attributes via SKILLT entities for optional fields (e.g., ASIs). The
“ ”symbol indicates an association that links an ORGT with a PERST or a SKILLT. For example,
lines 1-3 of Figure 30 denote three associations with the Platoon Leader position; one with a
PERST (O-2, 11A00) and two with SKILLTs (ASIs 3X and 5R). Once the ORGT rollup is
completed, the PERST and SKILLT information can be filtered and collated if required.

Clearly, using this approach, aggregation can be achieved using either the generic or bundled
attribute technique, provided that the ORGT data is originally maintained with position resolution.
In Army MTOE vernacular, this means that POSCO data may be rolled-up for any echelon, but

 50

“line number” entities (i.e., positions) must exist as the bottom level. Because all the service
force structure documents use position data as the bottom level, the LC2IEDM “establishment”
concept can be used, with minor adjustments, to represent personnel data, with either generic or
bundled attributes, for all of the U.S. services.

This section has described three basic approaches to modeling personnel data: generalization
hierarchies, generic attributes, and bundled attributes. Although apparently attractive, the
development of a generalization hierarchy of specific personnel attributes will be difficult due to
differences in perspective and the propensity for significant data consistency problems caused by
combinatorial affects. Further, because a modification requires the changing of the data model
(i.e., schema), it will add further complexity to the task of transition from disparate systems.
Either generic or bundled attributes will work with several existing schemes.

Making the choice between generic or bundled attributes will depend more on familiarity issues
than on hard technical arguments. If flexibility is a primary concern, then generic attributes are
favored. If convenient groupings are preferred, then bundled attributes are advantageous. Both
approaches have advantages and disadvantages due to their inherent characteristics. One option
is to use both: bundled attributes for common, recurring (e.g., mandatory) attributes, and generic
attributes for sparse, specialized (e.g., optional) attributes. Another option is to represent all
personnel qualifications and skills, and then bundle the skills based upon common categories to
improve understanding between different organizations. The authors prefer this last option.
However, the ultimate choice will have to be decided by those who will use and provide the data.

5. RECOMMENDATIONS AND SUMMARY.

The purpose of this study was to investigate ways in which enterprise identifiers (EID) can be
exploited in personnel systems to support interoperability between administrative and battle
command systems. To accomplish this task, data modeling techniques were defined that:

• exploit the capabilities of EIDs,
• facilitate the integration of personnel data between administrative

and battle command systems,
• apply across service and coalition boundaries, and
• are usable within an integrated Army Organization Server (AOS).

5.1 Recommendation 1: Incorporate EIDs into personnel automated information systems as
alternate keys.

EIDs are surrogate keys that are unique across the enterprise. A surrogate key is a single
attribute candidate key that contains no embedded intelligence (i.e., nothing can be gleaned from
the key about the item being identified.). From a relational database perspective, EIDs are
simply a single column in a database table that uniquely identifies a row of a table from every
other row of every other table in the enterprise. There are several performance and maintenance
advantages for using EIDs as primary keys, but all the interoperability advantages are gained
when they are used as alternate keys. This allows legacy systems to retain all their current key
structure, and still exploit the advantages of EIDs.

It is likely that any administrative personnel AIS will be based upon relational database
technology. To implement EIDs as alternate keys, each table requires one additional column to

 51

hold the EID. All the existing columns remain unchanged. Consequently, the legacy
applications interfaces (i.e., SQL interactions) remain unchanged. Initially, every row of every
table will require an EID, but this is a simple process. After that, each time a new data item is
inserted, it also receives an EID. The implementation technique to accomplish this is
uncomplicated and uses a simple program called an EID server. Recommendation X explains
this approach. The system managers determine the rate of exploitation of EIDs. This can be
never, or immediately. There is no internal requirement to use EIDs; however, as their
advantages are discovered, it is expected that they will rapidly be included into system updates.

5.2 Recommendation 2: To facilitate interoperability, include a special external function
called “Fetch-EID” into the interfaces of personnel AIS’s along with support for XML61.

For relational databases, the addition of a single table can dramatically increase interoperability.
This table contains all the EIDs used in the database and the corresponding table in which the
EID is an alternate key. When provided an EID, one can implement a function, called Fetch-
EID, that executes a simple query that returns all the attributes of the row in which the EID is an
alternate key. The attribute fields can be converted into XML to be returned as the arguments of
the “Fetch-EID” function. This allows database implementers to obtain specific (usually well-
known) authoritative data knowing only the EID of the required item, without having to know
the schema in which the data is maintained.

5.3 Recommendation 3: Implement EIDs as 64-bit sequences, or alternatively, as 16
characters using hexadecimal representation, building them as the concatenation of a
global EID prefix and a locally generated EID suffix.

The difficult part of implementing an EID scheme is ensuring that there is no performance
degradation while guaranteeing uniqueness. A technique to accomplish this is to create EIDs by
concatenating two unique values, an EID prefix and an EID suffix. The prefix is a globally
unique value, called an EID seed that is obtained from a centralized source. In this case, the
source is the Army EID seed server (ESS) that is sanctioned by the Army CIO / G-6 and located
at https://ess.arl.army.mil/. System managers obtain an ESS account and may then obtain 32-bit
EID seeds. Once a seed is obtained, an EID server (ES) can be established that creates 64-bit
EIDs by concatenating a locally generated 32-bit suffix to the 32-bit EID seed.

Note that this technique works for any sized prefix and suffix. The 64-bit value was selected is
because it was determined to be the smallest value that would accomplish the task. EIDs must
work in all environments, to include the low bandwidth communication conditions found in the
wireless, tactical environment. For this reason, identifying the smallest possible value was
determined to be a critical requirement. One way to think of the 64-bit value is that it allows 4.3
billion ES to be established that each produce 4.3 billion EIDs. This is a very large number,
especially considering that EID seeds are obtained first-come, first-served so that there is no
waste.

System managers can obtain as many seeds as they require. This number is normally determined
by the system architecture and performance constraints. For example, if a project manager needs

61 XML: The Extensible Mark-up Language. See footnote 28.

 52

https://ess.arl.army.mil/

to deploy 5,000 independent, distributed systems, then 5,000 EID seeds can be obtained (one per
system). Recall that the purpose of EIDs is to ensure uniqueness in a common format, nothing
more. This approach guarantees that no matter where data tagged with an EID propagates, it will
never collide with another EID within the enterprise. Further, the enterprise is determined by the
set of ESS subscribers and is not restricted other than by restricting membership. Subscribers
can be from any service, country, or type of organization as deemed necessary to conduct the
business of the Department of Defense.

In summary, the EIDs in this scheme maintain three important characteristics:

• All EIDs are surrogate keys (fit in a single attribute, no embedded intelligence),
• All EIDs have the same size and form (in this implementation 64-bits),
• The size is chosen to be as small as possible (to facilitate limited bandwidth).

5.4 Recommendation 4: Establish an initial interface between administrative and battle
command systems for personnel data via the Army Organization Server (AOS).

Force structure data forms the core of the information within battle command systems like the
Army Battle Command System (ABCS). The US Army Force Management Support Agency
(USAFMSA) maintains force structure data and is developing a new AIS called the Force
management System (FMS). The FMS operational requirements document (ORD) calls for an
Army organization server (AOS) as one of the products of FMS. The AOS will provide the
equivalent of digitized MTOE information for tactical, battle command systems. It will be a
database that provides hierarchical force structure data about both real organizations (ORG) and
the templates from which they are constructed, called organization-types (ORGT).

For each type of organization, the ORGT data will include information about the type of materiel
and people that are authorized, just like an MTOE. This data is named materiel-type (MATT) and
person-type (PERST) data, respectively. The AOS will extend the hierarchical organization
structure down to the individual soldier level. Thus, real organizations will extend down to the
billet level, and each billet (ORG) will have a corresponding template (ORGT) called a position.
When this occurs, about 70% of all the organizations in the AOS will be billets (or their
corresponding positions). Every position will have associated PERST data that describes the
requirements of the person that occupies the position. In Army vernacular, this includes
occupational categories, grade and rank constraints, additional skills, and any other PERST
information relevant to exercising battle command.

The AOS will be the authoritative source for digitized force structure related information. Army
battle command systems will obtain their force structure data from the AOS, to include the
personnel requirements data associated with each position. Therefore, this is an excellent point
at which to inject administratively maintained personnel requirements data into tactical system.
It is emphasized that the AOS only contains data related to the requirements for a person to fill a
position, and not information about people. Consequently, there are no privacy constraints for
this data.

 53

5.5 Recommendation 5: Make PERSCOM the authoritative source for Army person-type data
maintained in the AOS, and develop automated procedures for loading the EID values into
legacy systems planning to line up their data with the authoritative source.

One of the basic tenets on which the AOS is designed is that the experts who develop the data
should maintain it. Currently, USAFMSA receives personnel requirements information from
PERSCOM via a variety of documents. USAFMSA then inserts that information into their
databases for use in building force structure documents. The AOS will serve as a central access
point for force structure data for most of the Army; therefore, it makes sense that PERSCOM
maintain the PERST data directly rather than through a sequence of manual approaches.

However, the ease with which the EID-based key management will be adopted by the Services
will in great measure depend on how burdensome the task of retagging legacy data will be. To
avoid a situation where every participant begins to load EID values without any coordination
with the rest of the members of the enterprise, thereby creating yet another type of stove-piping,
namely, identifier stove-piping, adequate automated procedures should be developed that
conduct the semantic matching between the records of the authoritative data source and the
records of the target tables in the legacy systems. For a detailed analysis of this aspect of the
EID implementation and adoption see Annex A below.

The scope of PERST data should include officer, warrant officer, and enlisted soldiers. Like the
current MTOE, PERST attributes would cover occupational categories (e.g., AOC and MOS) and
additional skills (e.g., SQI, and ASI). Further, both grade and rank can be included; for example,
an E-8 First Sergeant can be designated differently from and E-8 Master Sergeant (this is
especially helpful across military service boundaries). The attributes of the PERST entity can be
extended to include specialized information; for example, a remark to indicate that a person must
also serve as a radiotelephone operator while assigned to a position. Eventually, the AOS may
include TDA force structure data at which time civilian requirements must also be added.

The most difficult part of this task is to develop the set of update rules to ensure that table
maintenance occurs in a rigorous manner. One of the reasons for using EIDs is the ease by
which relationship between data can be maintained. It is always more difficult to develop (and
agree upon) a scheme by which multiple organizations can maintain a database. But the long-
term advantages of having each expert maintain their portion of the data out-weigh the extra
work, delay, and complications encountered at the beginning. USAFMSA and PERSCOM will
have to work together to develop the procedures required to formally preserve a clean, efficient,
and unambiguous force structure database.

5.6 Recommendation 6: To facilitate inter-service exchange, model personnel data in the AOS
using both bundled and generic attributes similar to a meta-model. The bundled skill-type
option is recommended.

Of the five basic battlefield entities, none is handled in a more diverse manner than PERSON-
TYPE (PERST) data. PERST data is overloaded in all the services, meaning that it is used for more
than one purpose. The same set of PERST attributes are used to describe both the requirements
for a position (an ORGT) and the qualifications of a person. It is emphasized that PERST data
describes the experiences and qualifications of people, and not the human beings themselves
(i.e., it is not a PERSON entity which is a human being with attributes such as name, SSN, gender,

 54

race, or blood-type). The AOS will not contain any PERSON data, only PERST data, and only in
reference to qualifying the requirements to fill a position.62

The challenging task is to select data structures to contain position requirement attributes that can
be used across service (and national) boundaries even though each documents personnel qualities
in very different ways. Unlike the organization and materiel domains, there will be very few
attributes (or at least few enumerated ones) in the personnel domain that can be used across all
the different systems.63 A common theme discovered across the services is that personnel
information includes both mandatory and optional elements. Mandatory elements consisted of
rank and pay grade, primary and secondary occupational specialty, and skill level. Nearly all
personnel data included some form of these attributes. There were a wide variety of optional
attributes used sparsely within the domain. The ultimate objective is to provide a scheme that
facilitates the exchange of PERST data across service and coalition boundaries when units are task
organized into operating forces. To accomplish this, it is recommended that the
mandatory/optional perspective be used in the scheme to categorize personnel information for
use in battle command systems.

Three different strategies for modeling personnel data were presented: generalization hierarchies,
generic attributes, and bundled attributes. Of these three, it is recommended that generic
attributes be used to store atomic personnel attributes, but that a subset of these be bundled to
improved information exchange between systems; this is illustrated in Figure 27, and is named
Bundled Skill-Types. Because the PERSON-TYPE (PERST) name is already used in several data
models, it is recommended that this name be used for the set of bundled, common attributes. An
excellent entity name for the atomic personnel attributes is Skill-Type (SKILLT). This allows all
personnel attributes to be maintained in a single, generic SKILLT table, each with an EID. The
PERST table refers to the SKILLT table to identify the attributes associated with common
categories of rank and pay grade, primary and secondary occupational specialty, and skill level.
There will be one PERST entity for each position level ORGT entity, but there may be any number
of direct links between the ORGT and SKILLT entities.

This combination of techniques is recommended because it offers several advantages. First,
generic attributes offer flexibility to accommodate a wide variety of users. It divides the
consistency task evenly between the data model and the application developer. Second, having
the atomic personnel attributes located in a single table significantly eases the task of
maintenance. Third, having a core set of common attributes bundled together via common
themes allows disparate but corresponding entries in the SKILLT table to be identified. This
enhances interoperability between the different users by providing a way to compare analogous
schemes that use very different terms and configurations.

62 Army PERST data is exemplified by the job titles and associated coding known as Military Occupational

Specialties for enlisted and warrant officers and as Areas of Concentration for officers. Footnote 55 (on pg 35)
provides URLs for detailed information about PERST data for all ranks in the Army, Navy, and Air Force.

63 One of the few enumerated attribute that is usable across U.S. systems is “pay grade,” but this is a unique case.

 55

A recommended set of entities and attributes to accomplish this objective is provides in Figure
27. They are:

PERSON-TYPE:
person-type-rank
person-type-pay-grade
person-type-primary-occupation
person-type-secondary-occupation
person-type-skill-level
person-type-remarks-text

SKILL-TYPE:
skill-type-attribute-name
skill-type-attribute-code
skill-type-attribute-text
skill-type-attribute-remark

A person-type-name attribute might also be included, but its usefulness is dubious. There are
many options and alternative ways to define these entities. The key is finding the right mix of
capabilities that provides a simple and realistically maintainable solution. Compromise is often
the means to success.

 56

ANNEX A

ANALYSIS OF OPTIONS FOR
EID IMPLEMENTATIONS

57

PREFACE
This Annex addresses in detail a series of alternatives for the adoption and
implementation of database key-management schemes based on globally unique
enterprise identifiers (EIDs). Use of such a record naming convention in conjunction
with appropriate DoD policies and procedures can provide a readily achievable degree of
enterprise-wide data interoperability—one of the key components of the infostructure
needed to support Network-Centric Warfare solutions. Adoption of EIDs can facilitate
the creation of agency, Service, contractor, technology and functional area independent
information services when addressing, for example, military units, logistics, and
personnel data in the various automated information systems that support the warfighter.

As recommended by the sponsor, the approach takes into consideration the experience
and results already obtained by the Army in previous studies in the areas of force
management, and logistics, and seeks to leverage them for a comprehensive formulation.

 58

TABLE OF CONTENTS

PREFACE .. 58

SUMMARY.. 62

I. BASIC CONCEPTS AND DEFINITIONS .. 67

A. DEFINITION OF ENTITIES, ATTRIBUTES AND RELATIONSHIPS... 67

B. DATA MODELING NOTATION ... 69

II. TECHNICAL ALTERNATIVES ANALYSES .. 71

A. TECHNICAL ALTERNATIVES FOR THE EID STRUCTURE.. 71

B. TECHNICAL ALTERNATIVES FOR THE USE OF EIDS IN EXISTING SYSTEMS 73

C. TECHNICAL ALTERNATIVES FOR THE USE OF EIDS IN NEW SYSTEMS.............................. 84

D. PERFORMANCE CONSIDERATIONS WHEN USING ORG IDS IN NEW SYSTEMS 105

E. CONSIDERATIONS ON LOADING EID VALUES INTO LEGACY SYSTEMS 108

LIST OF FIGURES
Figure A-1. Abstraction Process from Enterprise Objects to Data Entities and Their
Attribution... 67

Figure A-2. Connections among Data Entities: Relationships ... 68

Figure A-3. Generalizations and Resulting Taxonomy .. 69

Figure A-4. Summary of the IDEF1X Notation ... 70

Figure A-5. First Technical Alternative for Globally Unique EIDs, e.g., ORG ID................ 71

Figure A-6. Second Technical Alternative for Globally Unique EIDs, e.g., ORG ID 72

Figure A-7. Partial Insertion of Globally Unique EIDs Within a Hierarchy, e.g., ORG
ID In Legacy Systems... 73

Figure A-8. Overall Insertion of Globally Unique EIDs Within a Hierarchy, e.g.,
ORG ID In Legacy Systems ... 74

Figure A-9. Partial Insertion of Globally Unique EIDs, e.g., ORG ID, Within Parent-
Child Identifying Relationships In Legacy Systems... 75

 59

Figure A-10. Overall Insertion of Globally Unique EIDs, e.g., ORG ID, Within
Parent-Child Identifying Relationships In Legacy Systems ... 76

Figure A-11. Overall Insertion of Globally Unique EIDs, e.g., ORG ID, Within
Parent-Child Non-Identifying Relationships In Legacy Systems... 77

Figure A-12. Partial Insertion of Globally Unique EIDs, e.g., ORG ID, Within
Double-Associative Parent-Child Relationships In Legacy Systems 78

Figure A-13. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for
Generalizations In Legacy Systems .. 79

Figure A-14. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for Identifying
Parent-Child Relationships In Legacy Systems.. 80

Figure A-15. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for Associative
Relationships In Legacy Systems ... 81

Figure A-16. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for Double
Associative Relationships In Legacy Systems.. 82

Figure A-17. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for Non-
Identifying Parent-Child Relationships In Legacy Systems ... 83

Figure A-18. Globally Unique EIDs, e.g., ORG ID, as Primary Keys with
Generalizations Recast as Non-Identifying Z-Relationships.. 85

Figure A-19. Globally Unique EIDs, e.g., ORG ID, as Primary Keys with
Generalizations Recast as Identifying Z-Relationships .. 86

Figure A-20. Globally Unique EIDs, e.g., ORG ID, as Primary Keys with Identifying
Relationships Recast as Non-Identifying-Relationships... 87

Figure A-21. Globally Unique EIDs, e.g., ORG ID, as Primary Keys with Identifying
Relationships in an Associative Entity Recast as Non-Identifying-Relationships 88

Figure A-22. Globally Unique EIDs, e.g., ORG ID, as Primary Keys and Recasting of
all Relationships as Record-Level Entries within a Master Lookup Table 89

Figure A-23. Any Identifying Parent-Child Relationship Maps to a Record-Level
Entry within the MasterLookup .. 90

Figure A-24. Any Identifying Parent-Child-GrandChild Relationship Maps to a
Record-Level Entry within the MasterLookup ... 91

Figure A-25. Any Non-Identifying Parent-Child Relationship Maps to a Record-Level
Entry within the MasterLookup .. 92

 60

Figure A-26. Any Generalization of Any Depth Maps to a Record-Level Entry within
the MasterLookup ... 93

Figure A-27. Any Associative Entity Maps to a Record-Level Entry within the
MasterLookup... 94

Figure A-28. Any Double Associative Entity Maps to a Record-Level Entry within
the MasterLookup ... 96

Figure A-29. Alternative Approach for Handling a Double-Association via
MasterLookup... 97

Figure A-30. Mapping of LC2IEDM Holding using EID and MasterLookup 100

Figure A-31. Example of MasterLookup entries for Unit Holding 101

Figure A-32. Mapping of LC2IEDM Organization-Organization-Association using
EID and MasterLookup... 103

Figure A-33. Example of MasterLookup entries for Organizational Hierarchy................... 104

Figure A-34. Segmentation of the MasterLookup by Area as a Means to Prevent
Performance Degradation ... 105

Figure A-35. Segmentation of the MasterLookup at Record-Level as a Means to
Prevent Performance Degradation .. 106

Figure A-36. A Process Context for Migrating EIDs into Legacy Databases 110

Figure A-37. Procedure for Automating EIDs Insertion into Legacy Databases 113

Figure A-38. Steps for EIDs Insertion as Primary Keys into Legacy Databases 122

LIST OF TABLES
Table 1. Notional Legacy Database Table for Personnel Data... 117

Table 2. Notional Authoritative Data Source Table for Person Data 117

Table 3. Definitions of the Functions, Subroutines, and Class Methods used in the
“MigrateToChildren” and “MigrationDriver” Algorithms... 120

 61

SUMMARY

A. BACKGROUND

As indicated in a previous report prepared for J6I64, key management65 constitutes one of
the four basic components for achieving database data interoperability66. It is important
to realize that database data interoperability is a special case in the general area of
interoperability. Other facets of data interoperability may be equally pertinent to the
implementation of Network Centric Warfare solutions, e.g., the interoperability of
various software applications67 used in information systems within the DoD enterprise.
Those areas of interoperability are, however, outside of the scope of the present analysis.

The purpose of this analysis, therefore, is to assess the technical alternatives for a DoD-
wide globally unique EID, such as ORG ID.68 There are two parts to the assessment.
The first pertains to the structure of the EID itself. The second addresses its use as the
primary record identifier—what is commonly referred as the "key" of a table in a
relational database. The analysis addresses technical alternatives for both existing as well
as planned systems.

The analysis also shows that the global uniqueness of the enterprise identifier (EID)
offers some interesting possibilities for how to model data that are not possible with
traditional key management schemes where uniqueness is only guaranteed at the table
level by the Relational Database Management System (RDBMS) engine.69

64 Org Id Requirements, IDA, Unclassified, 2002.
65 Key Management: the procedures for the generation, distribution and maintenance of the values used

within the tables of a relational database to uniquely identify the records in said tables.
66 Database Data Interoperability: The ability to reuse structured data among information systems

implemented with commercial RDBMs. It requires both semantic and syntactic overlap for the data
targeted for exchange. In other words, not only must the object be understood in the same way by both
systems, but it must be characterized also in the same way. Ideally, both systems share the same
metadata for the objects, and hence can reuse their data. However, it is unlikely that every RDBMS
implementation will conform to the same data model, and, therefore, it is better to agree to a common
information exchange data model (IEDM). Users are free to implement their databases according to their
needs and resources, but must transform their data prior to exchange in order to participate. Data reuse is
guaranteed for the objects captured in the IEDM.

67 Software Application Interoperability: The ability of software applications to manipulate non-
structured data, e.g., binary large objects (BLOB) and character large objects (CLOB). This type of
interoperability is mostly achieved via implementation of common formats for data types such as BLOB.
Technical Architectures such as the Army Joint Technical Architecture (A-JTA) provide the foundation
for software application interoperability.

68 For purposes of this paper we will refer to the globally unique enterprise identifier (EID) for military
units as the ORG ID.

69 Since every record within a table of an RDBMS that uses EIDs as keys is not only uniquely identifiable
within that table but within the whole database, as well as within all the databases of the enterprise that
implement such a key management, it is possible to create relationships directly at the record level rather
than at the table level.

 62

B. TECHNICAL ALTERNATIVES FOR THE EID STRUCTURE

Global uniqueness is the essential characteristic of the enterprise identifier for all relevant
battlefield objects, namely, FACILITY, FEATURE, MATERIEL, ORGANIZATION and
PERSON, as well as any other conceptual object required for their management, such as
PLAN, MISSION, ACTION, DOCUMENT, etc. This can be achieved as follows:

• By concatenating a centrally managed globally unique prefix with a locally
managed and locally unique suffix

• By collocating with each system within the enterprise an instance of an
application written so that it can produce globally unique identifiers with
infinitesimally small likelihood of creating duplicates

The first approach provides the users with the ability to query the prefix generator to find
out information about the allocation of the prefixes to users and permits some level of
control as to who may be authorized to create EIDs within the enterprise. As long as the
correct procedures for the generation of local suffixes are followed, the keys generated
under the first approach with a given prefix are guaranteed to be unique.

The second approach relies on the robustness of the code that generates the values of the
EID. Under this approach, there is no way to find out who may be using a given EID,
since its structure does not depend on a centrally managed prefix. If, on the one hand, the
enterprise creates the EID generator then it may control the creation of EIDs by limiting
who may have access to the code. If, on the other hand, the enterprise uses a commercial
product, it may not be possible to control the generation of EIDs outside of the enterprise.

C. TECHNICAL ALTERNATIVES FOR THE USE OF EIDs

Commercial RDBMSs ensure local uniqueness of the primary identifier for each table.
Such local keys are used to execute SQL queries, and to enforce referential constraints—
child tables contain copies of the parent keys, so-called migrated keys, which permit
cascade deletes and updates.

In the case of existing systems, the technical alternatives are:

• Use the EIDs as alternate keys while retaining the current key structure

• Use the EIDs as primary keys with retention of the current keys as alternate keys
to support code written against them

In the case of new systems, the technical alternatives are:

• Retain the traditional structure of relational databases, i.e., identifying parent-
child and supertype-subtype relationships. Use the EIDs as primary keys but only
for the parent entities, i.e., allow for the migration of the parent key into the child
table. Provide only sequential indexes for the child entities.

• Remove all identifying parent-child and supertype-subtype relationships.
Assign EIDs to all entities. But retain non-identifying relationships among the
entities.

 63

• Remove all relationships among the entities. Assign EIDs to all the entities.
Create all pertinent relationships by establishing record-level associations based
on the EIDs of each table.

D. PERFORMANCE CONSIDERATIONS FOR THE USE OF EIDs

When using EIDs such as ORG ID for record identification in participating information
systems within the DoD enterprise, one of the most important criteria is response time for
operations dependent on access to records tagged with such identifiers.

Performance degradation may be due to the following:

• Structure of the EIDs themselves

• Choice of implementation as the record identifier within a particular RDBMS—
either as primary key or as alternate key

With respect to the first possible impact of using EIDs as the record identifier the
following alternatives can be explored:

• If performance degradation arises from lack of native SQL data types in the
RDBMS to store the EID, then either indexing or hash tables may be appropriate.

For example, choosing EIDs as 64 bit long integers may not be supported by older
RDBMSs such as Microsoft SQL 7.0. Desktop database applications, such as Microsoft
Access, may record the EIDs using some other form of internal representation, e.g., the
currency data type. If EIDs are implemented with commercial products, such as
Microsoft database Replication Identifier (GUID) which is a 128 bit long integer, some
databases may be able to record the EIDs only as the ASCII string corresponding to the
Hexadecimal representation of the GUID values. In such cases, queries with large data
sets may be less efficient than if the EIDs were natively stored as numeric values.
Indexing or hash tables may be an alternative to ameliorate the problem of unacceptably
long response times.

The second possible source of performance degradation is the use of EIDs as alternate
keys or primary keys in conjunction with the regular structuring of relationships—
identifying, non-identifying and supertype-subtype hierarchies. However, no special
performance degradation should occur because the keys used are EIDs rather than keys
unique at the table level only—i.e., the traditional RDBMS generated table identifiers. If
no key migration is allowed, and every record in every table is uniquely identified via
EIDs, then relationships can, for example, be captured at the record level rather than at
the table level. One possibility for implementing this approach involves the creation of
physical tables—called in this analysis Master Lookup tables—in which all the
relationships are encoded via pairs of entries that correspond to, for example, a parent-
child relationship. It becomes apparent that when the number of records in the database
increases, the number of entries in a single Master Lookup table can become very large.
Since SQL queries will require the traversing of the Master Lookup table, this may have a
visible impact in the response time of a system implemented this way. When this occurs,
then the following alternatives can be explored:

 64

• segmentation by 'functional area' of the Master Lookup table data encoding the
record-level relationships

In other words, instead of one large lookup table where the data for all the relationships
among all the records of the database reside, multiple lookup tables may be used to
capture information pertinent to C2 operations. A different lookup table also may be
used for planning data or technical architecture data.

• segmentation by record of the Master Lookup table data encoding the record-level
relationships.

Again, instead of implementing a single large lookup table to relate the EIDs of the
records related in some form to each other, multiple lookup tables may contain the EIDs
for the relationships segmented according to specific criteria. For example, if military
units are related to other military units under operational command, and they are also
related to each other under future reorganization plans, then the owner of the information
system may maintain two different lookup tables. The information system interface will
search one or the other lookup table based on the entry point into the system by a user or
another external system. For example, if the system is set up to provide information via
the web, e.g., as a web portal, then the system knows which interface is initiating the
query. Also, code behind each web page can be tailored so that the system automatically
searches the appropriate lookup table. Additional measures may include dynamic
resorting of the lookup table to rank relationships based on the frequency with which they
are used. For instance, they may be placed at the beginning of the lookup table rather
than reside within it by entry or creation order.

E. CONSIDERATIONS ON LOADING EID VALUES INTO LEGACY SYSTEMS

Finally, even if the modifications to the structure of the legacy database can be
accomplished in a relatively straightforward manner, it is as important to assess how the
modified structure will load the pertinent EID values into the tables while retaining the
legacy data and functionality present prior to the modifications. The present analyses
show that the actual loading of EIDs in general does not represent a major obstacle.

However, allowing participating systems in the DoD enterprise to begin loading any kind
of EID values is likely to create a different type of stove-piping, namely, identifier stove-
piping. By this it is meant that the systems will all have globally unique EIDs but won't
be able to use them as effectively for the purpose of data integration because of identifier
stovepiping. In other words, even though every one of the enterprise systems has EIDs,
two systems using the same type of reference data still won't be able to use their EIDs for
data retrieval and updates UNLESS the EID values for commonly used data—so-called
reference data—are taken from authoritative data sources.

Adopting this policy will require the automation of the procedures for (1) matching
records in legacy systems with those of authoritative data sources that have already been
tagged with EIDs; (2) retrieving the EID values assigned to the records of the
authoritative data source; and then (3) populating the legacy system tables with them.
Absent these automated procedures, legacy systems with large data sets may be reluctant
or incapable of adopting EIDs, since the manpower requirements may not be supported
within their fiscal constraints.

 65

Fortunately, techniques from machine learning, such as Bayesian algorithms, appear to
have sufficient robustness to ease the transition from local keys to EIDs aligned with
those of authoritative data sources. As DoD moves towards a coherent approach for data
management, it is recommended that these techniques be further matured and made part
of the tool-kit for developers supporting the Services and agencies.

 66

I. BASIC CONCEPTS AND DEFINITIONS
A. DEFINITION OF ENTITIES, ATTRIBUTES AND RELATIONSHIPS

For the purpose of this analysis, the following concepts are defined as follows:

• ENTITY: a distinguishable object within the enterprise, such as person, place,
event, inanimate thing, administrative construct, conceptualization, etc., about
which information is kept

• ATTRIBUTE: a property or characterization of an entity

• RELATIONSHIP: a connection between two entities

• TAXONOMY: a particular model, or classification tree, about the nature and
relations of the enterprise entities

• ONTOLOGY: the universe of objects to be considered within a given enterprise

• DATA MODEL: A specification of the ENTITIES, ATTRIBUTES and RELATIONSHIPS
as well as the business rules needed to support the information requirements of a
particular area of the enterprise

Computer Monitor

Photographic Camera

Telephone Abstraction

COMPUTER
DEVICE

COMMUNICATION
DEVICE

PHOTOGRAPHIC
DEVICE

ATTRIBUTION

Type
Model
Serial Number
Pixel Resolution
Required Voltage

Computer-Device

Model
Serial Number
Focal Length
Brand Name

Photographic-Device

Communication-Device

Type
Manufacturer
Model

Abstraction

OBJECT ENTITY

Figure A-1. Abstraction Process from Enterprise Objects to Data Entities and Their

Attribution

Figure A-1 above shows the abstraction process that takes place when the enterprise
objects are conceptualized as entities, and then, based on the requirements of the
enterprise, how the entities are attributed.

 67

Figure A-2 below depicts how data entities pertaining to a given enterprise are related to
each other in terms of functions, as well as more abstract connections that are meaningful
within the context of the enterprise business.

PERSON

TRUCK

AIRCRAFT

TELEPHONE

PERSON

TRUCK

CAR

drive
s

owns

AIRCRAFT

services

includes

CAR

TELEPHONE

DATA ENTITIES RELATIONSHIPS

TRUCK

Figure A-2. Connections among Data Entities: Relationships

Once a particular enterprise determines the universe of its objects—its ontology, the
corresponding data entities can be further abstracted via generalizations. Such
hierarchical ordering creates specific taxonomies for the enterprise.

On the one hand, except for taxonomies built strictly on the basis of the actual sub-
components of the data entities—an AIRCRAFT is composed of one AIRCRAFT-BODY, two
AIRCRAFT-WINGs, one or more AIRCRAFT-ENGINEs, etc.,—most taxonomies based on
use or functionality tend to be unstable over time. They also are likely to show
inconsistencies across the different domains of the enterprise. On the other hand, highly
abstract hierarchies can provide great conceptual stability. However, they are more
difficult to grasp by the non-experts, and, therefore, are less likely to gain widespread
acceptance in other communities of interest.

Figure A-3 below shows how specific data entities are abstracted through generalizations
into more generic supertype entities. In this abstraction process one builds taxonomies
for the particular domain of the enterprise for which these data entities have been
postulated. A similar approach can be taken if, instead of starting with an ontology
closely related to the real objects of the enterprise, one begins with an ontology based on
the characteristics of the data itself. Consider, for instance, when all data entities are

 68

themselves instantiations of the class ENTITY, and all relations are themselves specific
cases of the class RELATIONSHIP. The resulting construct is called a meta-model, and it is
quite useful when developing tools to represent specific models dealing with the more
concrete data entities.

VEHICLE

TRUCK SUV GASOLINE

CAR DIESEL

KEROSENE

FUEL

MATERIEL
A
B
S
T
R
A
C
T
I
O
N

SUPERTYPE DATA ENTITY

SUBTYPE DATA ENTITIES

SUBTYPE DATA ENTITIES

Figure A-3. Generalizations and Resulting Taxonomy

B. DATA MODELING NOTATION

The previous section presented a high-level description of the concepts and typical
processes involved in the specification of information requirements for any given domain
of an enterprise. These activities constitute information modeling, or, more colloquially,
data modeling. Over the years, various methodologies for how to perform these tasks in
a structured approach have been developed. Within DoD, the methodology known as
IDEF1X (FIPS-184) was adopted as the standard representation, and it is the one that will
be used in this analysis. Figure A-4 below summarizes the IDEF1X symbology.

The basic notation of IDEF1X is as follows:

• INDEPENDENT ENTITY: a data entity that does not depend on any other data entity
for the identification of its records

• DEPENDENT ENTITY: a data entity that requires one or more data entities for the
identification of its records

• PRIMARY KEY: the attribute or attributes that uniquely identify the records of an
entity. If the primary key consists of a single attribute the primary key is said to
be simple. Otherwise it is composite. Most independent entities contain simple
primary keys. Dependent entities always have composite primary keys.

 69

• CANDIDATE KEY: an attribute or group of attributes that might serve as the
primary key of a data entity

• ALTERNATE KEY: A candidate key that has not been chosen as a primary key.
• FOREIGN KEY: the key of the parent entity that is contributed via a relationship to

the child entity. If the foreign key by itself or in conjunction with other attributes
serves to identify the records of the child entity then it is a PRIMARY FOREIGN
KEY.

• IDENTIFYING RELATIONSHIP: a relationship in which all the attributes that
constitute the primary key of the parent data entity become part of the primary
key of the child entity.

• NON-IDENTIFYING RELATIONSHIP: a relationship where all the attributes that
constitute the primary key of the parent data entity do not become part of the
primary key of the child entity.

MATERIEL Entity Name
Entity Primary Key Area
Entity Attribute Area

ORGANIZATION-NAME

Independent
Entity

Dependent
Entity

P
P

Z
Z
N

N

One-to-zero-or-more

One-to-one-or-more

One-to-zero-or-one

One-to-exactly-N

Zero-or-one-to-zero-or-more

Zero-or-one-to-one-or-more

Zero-or-one-to-zero-or-one

Zero-or-one-to-exactly-N

P

Z

N

VEHICLEFUEL

MATERIEL

Complete
Subtype Hierarchy VEHICLEFUEL

MATERIEL

Incomplete
Subtype Hierarchy

Figure A-4. Summary of the IDEF1X Notation

In IDEF1X, independent entities are represented as rectangles with square corners.
Dependent entities are represented as rectangles with rounded edges. Identifying
relationships are depicted as solid lines starting at the parent entity and terminating at the
child entity. Non-identifying relationships use a doted line instead. A black dot at the
child's end customarily represents the so-called "many" side of the relationship. In
addition, relationships can specify a particular "cardinality", i.e., how many instances of
the child entity are related to the parent entity.

 70

II. TECHNICAL ALTERNATIVE ANALYSIS
A. TECHNICAL ALTERNATIVES FOR THE EID STRUCTURE

Global uniqueness is the essential characteristic of the enterprise identifier for all relevant
battlefield objects, namely, FACILITY, FEATURE, MATERIEL, ORGANIZATION and
PERSON, as well as any other conceptual object required for their management, such as
PLAN, MISSION, ACTION, DOCUMENT, etc. Figure A-5 depicts the basic concept
underlying the first technical alternative for achieving global uniqueness, namely, the
concatenation of a globally unique prefix with a locally unique suffix.

1 … 32… 1 … 32…

Globally Unique Centrally Managed
32 Bit Integer

Locally Unique Locally Managed
32 Bit Integer

64 Bits (8 Bytes)

Globally Unique 64 Bit Long Enterprise Identifier

P
r e

f i x Su
f f i x

E I D
General Concept

 Prefix Suffix

Figure A-5. First Technical Alternative for Globally Unique EIDs, e.g., ORG ID

Specifically, such a technical alternative may be implemented by instituting a centralized
management of the globally unique prefixes so that:

• the participating enterprise members can obtain them readily, and

• they can be assured that once a prefix has been released to a requestor, no one else
within the enterprise will receive the same prefix.

In addition, the participating members must ensure that the locally managed suffixes are
all unique—such as when an RDBMS creates a local key as auto-number, i.e., a
sequentially increasing integer that never repeats. Figure A-5 shows how the Army has
proposed to create such a type of EID, namely, by choosing 32 bit long integers for both

 71

the prefix and the suffix portions of the enterprise identifier. Within the SHAPE
initiative called the Army Tactical C2 System (ATCCIS), a similar approach has been
demonstrated where the prefixes are assigned to each participating nation, rather than to
individual organizations.

DB 2

Request

Answer

Globally Unique
Identifier
Generator

A
P
I

Universally Unique 128 Bit Long Integer
(displayed as HEXADECIMAL Character String)

DB 1

Request

Answer

Globally Unique
Identifier
Generator

A
P
I

Independent
Locally Resident

Copies of the GUID

{4EB84A16-8DB9-4725-80EA-EDC91F87AB85}
{B99FAF31-5EDF-4D08-815E-9097A8CFDA5E}
{9426C9B3-E0B3-4CFC-9B44-5EC97D7CB9D8}.

.

Microsoft GUID

{7D963281-B3B9-47AA-A3B0-FA39A0A66556}
{3DB07BC6-73CC-428A-B286-78C679C1B801}
{2A09CED4-769A-4159-8B22-57CF5FA10008}.

.

Figure A-6. Second Technical Alternative for Globally Unique EIDs, e.g., ORG ID

Figure A-6 depicts another alternative for structuring globally unique EIDs. Under this
approach, independent instances of executable software objects with appropriate
interfaces, i.e., APIs, are placed within each participating information system. Whenever
a record in a table from an RDBMS, or an object in an object oriented system, is created,
the application requests a new EID from the GUID generator.

The code within the GUID generator is written so that the likelihood of two instances of
the generator creating the same value is extremely small. Such an approach has been
implemented by Microsoft for their database Replication Identifier. Each table can have
as its primary key such a replication identifier, and no two records will receive the same
value. In the Microsoft implementation the Replication Identifier has a 128 Bit long
integer internal representation, i.e., the RDBMS stores the values in that format. The
user, however, sees the values as a character string corresponding to the hexadecimal
representation of the 128 bit long integer value.

 72

B. TECHNICAL ALTERNATIVES FOR THE USE OF EIDs IN EXISTING
SYSTEMS

In the case of existing systems the main options are:

• use the EIDs as alternate keys while retaining the current key structure

• use the EIDs as primary keys with retention of the current keys as alternate keys
to support code written against them

1. USE OF EIDs AS ALTERNATE KEYS IN EXISTING SYSTEMS

The first option basically implies that tables in databases of existing systems can begin to
participate in data exchanges based on EIDs by simply adding a new attribute to them
that can be used as an alternate key.

The impact to the databases is minimal since their key management is left untouched. In
other words, all the code that has been written against the keys of each table will continue
to operate since the EID appears to the RDBMS engine as another attribute below the line
of the primary key area.

Globally Unique EID added to Independent Entity Only

DB01_TblC_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblB_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblC_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblB_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

EID

Figure A-7. Partial Insertion of Globally Unique EIDs Within a Hierarchy, e.g., ORG ID In
Legacy Systems

Because the EID is not the primary key, the organization that owns the legacy system
may choose to insert EIDs only in certain tables (e.g., the independent entities). Figure
A-7 above shows the case where only the supertype entity represented as DB01_TblA, has

 73

been modified to contain a field for EIDs. In such a scenario, only DB01_TblA may be
directly queried using the EID value. All the subtypes may remain hidden to an external
system that is allowed to query this database if the owner so chooses. Visibility of the
subtype entities may be provided either by assigning EIDs also to the subtypes, or by
creating an API that works in two steps. First, the EID is used to retrieve the local key
(in this example the value of DB01_TblA_Key), and then the actual data query is executed
using the retrieved local key value to access the supertype and subtype entities. Figure
A-8 depicts the modifications that ensue when adding EIDs to all tables in DB01.

DB01_TblC_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblB_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblC_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblB_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

Globally Unique EID added to All Entities

EID

EID

EID

Figure A-8. Overall Insertion of Globally Unique EIDs Within a Hierarchy, e.g., ORG ID In
Legacy Systems

This approach may be adequate where the database structure in DB01 has been modified
so that the entity corresponding to TblB is now part of a generalization—as the local
name DB01_TblB_SubOfTblA suggests. But that is not the case in other databases
connecting to it. For example, in the DoD Data Architecture (DDA) the five battlefield
objects (FACILITY, FEATURE, MATERIEL, ORGANIZATION and PERSON) are independent
entities, but in the NATO Land C2 Information Exchange Data Model (LC2IEDM) they
are subtype entities of a new entity called OBJECT-ITEM. Data collected in LC2IEDM-
conformant databases may interoperate with DDA-conformant databases by using the
EID to execute queries and align their data even though local key management differs
among them—i.e., there is no need to query the LC2IEDM supertype entity OBJECT-ITEM
prior to accessing any of the subtypes in the hierarchy, e.g., ORGANIZATION.

 74

What has been said above for the case of supertype-subtype hierarchies applies as well
when dealing with parent-child relationships. Figure A-9 shows the resulting structure
when the EID is used as an alternate key only in the parent entity.

DB01_TblD_ChldOfTblA
DB01_TblA_Key (FK)
DB01_TblD_ChldOfTblA_Index

DB01_TblD_ChldOfTblA_Attr01
DB01_TblD_ChldOfTblA_Attr02
DB01_TblD_ChldOfTblA_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblD_ChldOfTblA
DB01_TblA_Key (FK)
DB01_TblD_ChldOfTblA_Index

DB01_TblD_ChldOfTblA_Attr01
DB01_TblD_ChldOfTblA_Attr02
DB01_TblD_ChldOfTblA_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

Globally Unique EID As Alternate Key in Parent Only

EID

Figure A-9. Partial Insertion of Globally Unique EIDs, e.g., ORG ID, Within Parent-Child
Identifying Relationships In Legacy Systems

If not only the independent parent entities are meant to be accessible via EIDs, then the
EID attribute can also be added as an alternate key to the child entity. Such a
modification is depicted in Figure A-10. Again, consider what happens when the
organization owning DB01 decides to make information contained in child entities
available to external users. However, it does not want to spend time and effort adding
new alternate keys to all child tables in DB01., The organization is able to share this
information by providing an interface that first retrieves the value of the local key using
the EID, and then executing the query based on the value of DB01_TblA_Key.

 75

Overall Insertion of Globally Unique EID As Alternate Keys

DB01_TblD_ChldOfTblA
DB01_TblA_Key (FK)
DB01_TblD_ChldOfTblA_Index

DB01_TblD_ChldOfTblA_Attr01
DB01_TblD_ChldOfTblA_Attr02
DB01_TblD_ChldOfTblA_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblD_ChldOfTblA
DB01_TblA_Key (FK)
DB01_TblD_ChldOfTblA_Index

DB01_TblD_ChldOfTblA_Attr01
DB01_TblD_ChldOfTblA_Attr02
DB01_TblD_ChldOfTblA_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

EID

EID

Figure A-10. Overall Insertion of Globally Unique EIDs, e.g., ORG ID, Within Parent-Child
Identifying Relationships In Legacy Systems

When the relationship among the entities is non-identifying, then insertion of EIDs as
alternate keys has very little effect on the key management scheme of the legacy system,
since the records in the child entity do not depend on the key of the parent entity for their
identification. Whether the EID is inserted in some but not all independent entities,
connected to each other via non-identifying relationships, is open to the particular data
exchange needs specified for the given database, e.g., DB01. This case is schematically
shown in Figure A-11, below.

 76

DB01_TblE
DB01_TblE_Key

DB01_TblA_Key (FK)
DB01_TblE_Attr01
DB01_TblE_Attr02
DB01_TblE_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblE
DB01_TblE_Key

DB01_TblA_Key (FK)
DB01_TblE_Attr01
DB01_TblE_Attr02
DB01_TblE_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

Overall Insertion of Globally Unique EID As Alternate Keys

EID

EID

Figure A-11. Overall Insertion of Globally Unique EIDs, e.g., ORG ID, Within Parent-Child
Non-Identifying Relationships In Legacy Systems

When dealing with double associative entities (see Figure A-12 below), it may be
sufficient to insert the EID only in the parent entity. Normally, queries involving a parent
and its double associative entity do not assume that one knows both migrated keys. In
other words, the query is executed to find out which instances of Entity A are associated
with another instance of the same table whose key one already knows.

In contrast, adding an EID to the double associative table permits the owner of a
database, such as our notional DB01, to exercise tighter control on which associations are
made available to external users and which are kept internal to the organization. The API
for external users may be constructed so that it works only with the double associative
entity EID value provided by the external user to the API. External users are not
permitted to query the local key to traverse all possible associations that a given instance
of Entity A may have beyond those that are tagged with an EID. Note that Figure A-12
depicts the modification needed to add an EID only to the parent of the double
associative table.

 77

DB01_TblA_Assn

Parent DB01_TblA_Key (FK)
Child DB01_TblA_Key (FK)
DB01_TblA_Assn_Index

DB01_TblA_Assn_Attr01
DB01_TblA_Assn_Attr02
DB01_TblA_Assn_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblA_Assn

Parent DB01_TblA_Key (FK)
Child DB01_TblA_Key (FK)
DB01_TblA_Assn_Index

DB01_TblA_Assn_Attr01
DB01_TblA_Assn_Attr02
DB01_TblA_Assn_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

EID

Figure 12. Partial Insertion of Globally Unique EIDs, e.g., ORG ID, Within Double-
Associative Parent-Child Relationships In Legacy Systems

The previous statements apply equally to the case of regular associative entities—also
known as many-to-many breakers. The only change in Figure A-12 would be that instead
of a single parent entity, i.e., DB01_TblA, there would be two parent entities (for instance
DB01_TblA and DB01_TblG). To execute a query, one would have to know the local key
value in each table, since the associative entity can only be traversed using the value of
either DB01_TblA_Key or DB01_TblG_Key. In this case, inserting an EID in the
associative entity may provide some benefit, since the owner of DB01 can publish those
EIDs marked for exchange while leaving others only for internal use.

2. USE OF EIDs AS PRIMARY KEYS IN EXISTING SYSTEMS

A more radical change to the key management of a legacy system wanting to use EIDs is
depicted in Figure A-13. Under this approach the current primary keys are demoted to
alternate key status, and all entities now use EIDs as their primary keys. The advantage
of this approach is that, for example, in the case of generalizations all the subtypes
automatically inherit the key of the supertype. This would mean that under this approach
all SQL queries in our notional database DB01, written against the former primary key
DB01_TblA_Key, can still run. Also, external systems that know the respective EID
values implemented for each table can now navigate through the entire hierarchy without
needing to know the values of the local alternate key. Of course, porting the data from

 78

the previous version of DB01 to the modified version may require careful attention to
how the migrated attributes are reloaded so that referential integrity can be maintained
(See Section E below on how this can be done).

DB01_TblC_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblB_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

Globally Unique EID As Primary Keys

DB01_TblC_SubOfTblA

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblB_SubOfTblA

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblA

DB01_TblA_Key
DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

EID (FK)

EID (FK)

EID

Figure A-13. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for Generalizations In
Legacy Systems

In the case of parent-child identifying relationships, the use of EIDs as the primary keys
would also allow querying the data in DB01 in a more straightforward manner. There
would be no need to access the local key in order to traverse the records of the child
entity if no EID has been added there. For backwards compatibility, it may be necessary
to retain the local key as an alternate key, both in the parent as well as the child entity so
that existing code written against those values can still be used. Figure A-14 depicts the
modification to the tables in DB01 that would take place when inserting the EID into the
parent-child relationship shown therein.

 79

DB01_TblA

DB01_TblA_Key
DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblD_ChldOfTblA

DB01_TblD_ChldOfTblA_Index

DB01_TblA_Key
DB01_TblD_ChldOfTblA_Attr01
DB01_TblD_ChldOfTblA_Attr02
DB01_TblD_ChldOfTblA_Attr03

DB01_TblD_ChldOfTblA
DB01_TblA_Key (FK)
DB01_TblD_ChldOfTblA_Index

DB01_TblD_ChldOfTblA_Attr01
DB01_TblD_ChldOfTblA_Attr02
DB01_TblD_ChldOfTblA_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

EID

EID (FK)

Figure A-14. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for Identifying Parent-
Child Relationships In Legacy Systems

Introducing EIDs as the primary keys for associative entities follows a similar approach,
namely, the retention of the original local key as an alternate key and the addition of an
EID to replace it. For backwards-compatibility with code written against those keys, the
associative entity may retain those attributes as well. Figure A-15 shows the resulting
structure for this case.

 80

DB01_TblG

DB01_TblG_Key
DB01_TblG_Attr01
DB01_TblG_Attr02
DB01_TblG_Attr03

DB01_TblA

DB01_TblA_Key
DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblATblG_Assn

DB01_TblDTblG_Assn_Index

DB01_TblA_Key
DB01_TblG_Key
DB01_TblATblG_Assn_Attr01
DB01_TblATblG_Assn_Attr02
DB01_TblATblG_Assn_Attr03

DB01_TblG

DB01_TblG_Key

DB01_TblG_Attr01
DB01_TblG_Attr02
DB01_TblG_Attr03

DB01_TblATblG_Assn

DB01_TblA_Key (FK)
DB01_TblG_Key (FK)
DB01_TblATblG_Assn_Index

DB01_TblATblG_Assn_Attr01
DB01_TblATblG_Assn_Attr02
DB01_TblATblG_Assn_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

EID

EID

DB01_TblA_EID (FK)
DB01_TblG_EID (FK)

Figure A-15. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for Associative
Relationships In Legacy Systems

 81

DB01_TblA_Assn

DB01_TblA_Assn_Index

Parent DB01_TblA_Key
Child DB01_TblA_Key
DB01_TblA_Assn_Attr01
DB01_TblA_Assn_Attr02
DB01_TblA_Assn_Attr03

DB01_TblA

DB01_TblA_Key
DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblA_Assn

Parent DB01_TblA_Key (FK)
Child DB01_TblA_Key (FK)
DB01_TblA_Assn_Index

DB01_TblA_Assn_Attr01
DB01_TblA_Assn_Attr02
DB01_TblA_Assn_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

Parent DB01_TblA_EID (FK)
Child DB01_TblA_EID (FK)

EID

Figure A-16. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for Double Associative
Relationships In Legacy Systems

The transformation of the database structure for double associative entities shown in
Figure A-16 is almost identical to the one shown in Figure A-15 for regular associative
entities. Note that the alternate keys are kept with their original role names in order to
allow reuse of code written against the original structure with minimal impact. Although
nothing prevents the insertion of an EID in the double associative entity
DB01_TblA_Assn, the extra step should be considered only where direct access to the
records in that table via the EID is planned. As stated above, this modification permits
the DB01 owner to exercise further control over the records maintained in those tables.
However, similar controls may be implementable via filters in the API so that only some
but not all associations are visible to an external user who knows what the EID values
are.

 82

DB01_TblE

DB01_TblE_Key
DB01_TblA_Key
DB01_TblE_Attr01
DB01_TblE_Attr02
DB01_TblE_Attr03

DB01_TblA

DB01_TblA_Key
DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblE
DB01_TblE_Key

DB01_TblA_Key (FK)
DB01_TblE_Attr01
DB01_TblE_Attr02
DB01_TblE_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblH_EID

DB01_TblA_EID (FK)

DB01_TblA_EID

Figure A-17. Globally Unique EIDs, e.g., ORG ID, as Primary Keys for Non-Identifying
Parent-Child Relationships In Legacy Systems

Under the approach we have been discussing so far, adopting EIDs in the case of non-
identifying parent-child relationships does not represent any major change. Tthe child
table will contain a migrated key from the parent entity just as before. The only
difference is that whereas before this key was just a locally unique key, now it is an EID.
As indicated for the previous examples, the local keys may be maintained as alternate
keys both in the parent as well as the child entity to minimize the impact on pre-exiting
code written against the locally unique keys.

It is debatable whether one should maintain the old keys indefinitely, or whether at some
point it would be more efficient to make the full transformation based on EIDs only.
Consider, as examples, when the volume of code written against the new primary keys,
i.e., EIDs, is substantially larger than the previous code, and the cost of maintaining both
the old and the new code is larger than re-writing the old code in terms of the new
primary keys. This approach is illustrated in Figure A-17. Appropriate DoD-wide
migration plans requiring that by some given date all data retrieval be based on EIDs may
be necessary, both to give the owners of legacy systems a concrete target, as well as to
allocate resources for achieving that goal without major dislocations or loss of service.

 83

C. TECHNICAL ALTERNATIVES FOR THE USE OF EIDs IN NEW SYSTEMS

The following are the possible ways for implementing EIDs within new (i.e., planned but
not yet operational) information systems:

• Retain the traditional structure of relational databases, i.e., identifying parent-
child and supertype-subtype relationships. Use the EIDs as primary keys but only
for the parent entities, i.e., provide only sequential indexes for the child entities.

• Remove all identifying parent-child and supertype-subtype relationships. Assign
EIDs to all entities.But retain non-identifying relationships among the entities.

• Remove all relationships among the entities, Assign EIDs to all the entities.
Create all pertinent relationships by establishing record-level associations based
on the EID values loaded in each table.

1. USE OF EIDs AS PRIMARY KEYS IN NEW SYSTEMS WITH STANDARD
RELATIONSHIPS

What has been said in Section B.2 above (Figures A-13 through A-17) applies to new
systems with the single difference that since these are systems designed from the
beginning to use EIDs, there are, therefore, no legacy local keys to maintain and track. In
other words, if DB01 had been designed as a new system with EIDs, there would be no
alternate keys of the type DB01_TblA_Key, DB01_TblE_Key, etc., in any of the tables but
only EIDs. The typical relationships (identifying and non-identifying parent-child
relationships, associative relationships and generalizations) are all the same as before.
Moreover, the RDBMS engine is used to perform all database operations based on the
EIDs from the beginning—e.g., cascade deletes and updates.

This type of result is likely to be the one that will occur in Army systems that are now
being designed in conformance with the Core Architecture Data Model (CADM).
Currently, CADM-conformant systems in the Army are centrally managing the keys for
each of the tables in the physical schema. Due to software restrictions, the identifiers are
not implemented as 64 bit integers. In the FY03-FY04 period, it is expected that all
RDBMSs will have this capability. At this point, 64 bit integers can be loaded, and it is
expected that they will be EIDs of the type discussed in Section A under Figure A-5.

2. USE OF EIDs AS PRIMARY KEYS IN NEW SYSTEMS WITH ONLY NON-
IDENTIFYING RELATIONSHIPS

The global uniqueness of the EIDs, however, may allow database designers to recast their
data models in a form that greatly simplifies the primary key specification of all entities.
Since every record in every table is uniquely identifiable within the entire database rather
than just locally, all entities can be designed without any need for composite primary
keys. In addition, since supertype-subtype relationships are equivalent to Z-relationships,
they too can be reformulated in this form. Figure A-18 below shows the equivalent
formulation of a supertype-subtype hierarchy in the form of non-identifying Z-
relationships. In order to ensure that no record in the child entity can be created that does
not have a corresponding record in the parent entity (the supertype), the relationship is
defined as no-nulls-allowed.

 84

On the one hand, although this approach is quite elegant, arguably there are two EIDs
which could uniquely identify each record in the subtype entities. For this reason, one
may consider relaxing the rule that only non-identifying relationships should be used
under this approach and allow their use exclusively for generalizations.

Figure A-19 below depicts the resulting structure when using identifying Z-relationships
to express supertype-subtype hierarchies. Since within IDEF1X a subtype hierarchy is
understood as a decomposition into mutually exclusive classes, code within the RDBMS
must ensure that the same instance of the supertype entity not be a Z-child in more than
one of the subtype entities.

Z

Z

DB01_TblB_SubOfTblA

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblC_SubOfTblA

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblC_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblB_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblB_SubOfTblA_EID

DB01_TblA_EID (FK)

DB01_TblC_SubOfTblA_EID

DB01_TblA_EID (FK)

DB01_TblA_EID

Figure A-18. Globally Unique EIDs, e.g., ORG ID, as Primary Keys with Generalizations
Recast as Non-Identifying Z-Relationships

On the other hand, relaxing this rule may enable the owner of the database to create a
business rule that permits the users to combine attributes from different classes without a
need for an explicit new subtype—e.g., an amphibious vehicle may be specified as the
combination of a land vehicle and a vehicle thus capable of moving on land and
navigating in water. The application may provide the option of choosing any and all
pertinent attributes from the subtype entities as required.70

70 This is something quite familiar to application developers working with Object Oriented (OO) data

models, and shows yet another potential benefit for the use of EIDs, namely, the ability to bridge the gap
between OO and traditional Entity-Relationship Data models (ERD).

 85

Z

Z

DB01_TblB_SubOfTblA

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblC_SubOfTblA

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblC_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblB_SubOfTblA

DB01_TblA_Key (FK)

DB01_TblB_SubOfTblA_Attr01
DB01_TblB_SubOfTblA_Attr02

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblB_SubOfTblA_EID (FK)

DB01_TblC_SubOfTblA_EID (FK)

DB01_TblA_EID

Figure A-19. Globally Unique EIDs, e.g., ORG ID, as Primary Keys with Generalizations
Recast as Identifying Z-Relationships

There is no substantial gain in recasting identifying relationships as non-identifying
relationships with EIDs as the primary key except that, as mentioned above, the keys
consist of a single attribute—i.e., there are no composite keys under this approach.
Figure A-20 above depicts the resulting structure under this approach. The possible
benefit arising from this approach may be in performance gains. The table records need
only one attribute rather than the migrated key plus an index under the traditional
approach. It is also clear, once this approach is adopted, both traditional identifying and
non-identifying relationships can be mapped to the same EID-based data structure.

 86

DB01_TblD_ChldOfTblA
DB01_TblA_Key (FK)
DB01_TblD_ChldOfTblA_Index

DB01_TblD_ChldOfTblA_Attr01
DB01_TblD_ChldOfTblA_Attr02
DB01_TblD_ChldOfTblA_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblD_ChldOfTblA

DB01_TblD_ChldOfTblA_Attr01
DB01_TblD_ChldOfTblA_Attr02
DB01_TblD_ChldOfTblA_Attr03

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblD_ChldOfTblA_EID

DB01_TblA_EID (FK)

DB01_TblA_EID

Figure A-20. Globally Unique EIDs, e.g., ORG ID, as Primary Keys with Identifying
Relationships Recast as Non-Identifying-Relationships

Adding another parent entity to the diagram in Figure A-20 to represent a many-to-many
breaker entity results in a structure with two EIDs below the primary key area, namely
DB01_TblA_EID and DB01_TblG_EID (See Figure A-21 below). The potential benefit of
such a use of EIDs is the same as the one for parent-child relationships mentioned above,
i.e., performance gains. The table records need only one attribute rather than the
migrated key plus an index under the traditional approach.

 87

DB01_TblG

DB01_TblG_Key

DB01_TblG_Attr01
DB01_TblG_Attr02
DB01_TblG_Attr03

DB01_TblATblG_Assn

DB01_TblA_Key (FK)
DB01_TblG_Key (FK)
DB01_TblATblG_Assn_Index

DB01_TblATblG_Assn_Attr01
DB01_TblATblG_Assn_Attr02
DB01_TblATblG_Assn_Attr03

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblG

DB01_TblG_Attr01
DB01_TblG_Attr02
DB01_TblG_Attr03

DB01_TblATblG_Assn

DB01_TblATblG_Assn_Attr01
DB01_TblATblG_Assn_Attr02
DB01_TblATblG_Assn_Attr03

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblG_EID

DB01_TblATblG_Assn_EID

DB01_TblG_EID (FK)
DB01_TblA_EID (FK)

DB01_TblA_EID

Figure A-21. Globally Unique EIDs, e.g., ORG ID, as Primary Keys with Identifying
Relationships in an Associative Entity Recast as Non-Identifying-Relationships

There is no substantial difference between this use of EIDs in many-to-many breaker
entities such as the one shown in Figure A-21 and the resulting structure from a double
associative entity using non-identifying relationships. Instead of having two EIDs
coming from two different entities, the double associative entity would also be
independent, but would be related to a single parent entity and the two migrated keys.
Below the primary key area would be the role-named keys from the parent entity. Again,
the potential benefit may lie in performance gains, since the table records need only one
attribute rather than the two migrated keys plus an index under the traditional approach

3. USE OF EIDs AS PRIMARY KEYS IN NEW SYSTEMS WITH ALL
RELATIONSHIPS CAPTURED VIA DATA

The previous sections have shown that the insertions of globally unique EIDs, such as the
ORG ID, allow the handling of data in ways that are not possible when the keys are only
unique at the table level—the typical situation in most current database implementations.

Nevertheless, in all the alternatives discussed in Section 2 above, we have made use of
the traditional key migration from parent entity to child entity. As a result, the RDMBS
engine can perform the required table joins and execute standard SQL data manipulation
operations using such pointers embedded in the dependent tables. Thus, in all the cases
surveyed above, child entities, even when modeled as independent entities with the parent
key below the primary key area, still have another EID. This EID theoretically could

 88

identify all the records in the table (i.e., by reverting to the use of a sequential index
coupled to the EID to permit the many-children.)

A completely different approach looks at data entities within any given database using
EIDs—such as the notional DB01 used in the examples above—more like objects within
an object-oriented approach (the term is used loosely here). This approach results in the
complete elimination of all relationships among the logical entities and the use of both
EIDs as the single primary key for their records. Moreover, a physical database table
captures the relationships at the record level between any record from any table to any
other record in the same table or in a different one.

Figure A-22 shows conceptually what the table structure of the notional database DB01
would look like under this approach. Note that here the entity relationships are meant to
be captured via data in DB01_MasterLookup (the blue table in Figure A-22).

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblATblG_Assn

DB01_TblATblG_Assn_Attr01
DB01_TblATblG_Assn_Attr02
DB01_TblATblG_Assn_Attr03

DB01_TblG

DB01_TblG_Attr01
DB01_TblG_Attr02
DB01_TblG_Attr03

DB01_TblC_SubOfTblA

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblM_ChldOfTblA

DB01_TblM_ChldOfTblA_Attr01
DB01_TblM_ChldOfTblA_Attr02
DB01_TblM_ChldOfTblA_Attr03

DB01

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

Recasting of All Relationships As Data Within a MasterLookup Table

DB01_TblA_EID

DB01_TblATblG_Assn_EID

DB01_TblG_EID

DB01_TblC_SubOfTblA_EID

DB01_TblM_ChldOfTblA_EID

DB01_EID_01

DB01_EID_02

Figure A-22. Globally Unique EIDs, e.g., ORG ID, as Primary Keys and Recasting of all
Relationships as Record-Level Entries within a Master Lookup Table

The question that needs to be answered now is whether all the typical IDEF1X structures
can be adequately implemented using this approach. In other words, one needs to show
that the following IDEF1X constructs can be faithfully replicated using the new
approach, namely, (1) identifying Parent-Child relationships of any depth, (2) non-
identifying Parent-Child relationships, (3) generalizations of any depth, (4)
associations—also called many-to-many breakers and (5) double associative entities.
The following paragraphs schematically show how each one of these IDEF1X constructs

 89

can be recast in terms of globally unique EIDs, coupled with the use of a lookup table
that encodes at the record-level all the relationships types listed previously.

IMPLEMENTATION OF PARENT-CHILD RELATIONSHIPS VIA EIDS AND THE
MASTERLOOKUP TABLE

Mapping IDEF1X Structures

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblM_ChldOfTblA

DB01_TblM_ChldOfTblA_Attr01
DB01_TblM_ChldOfTblA_Attr02
DB01_TblM_ChldOfTblA_Attr03

DB01_TblA
DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblM_ChldOfTblA
DB01_TblA_Key (FK)
DB01_TblM_ChldOfTblA_Key

DB01_TblM_ChldOfTblA_Attr01
DB01_TblM_ChldOfTblA_Attr02
DB01_TblM_ChldOfTblA_Attr03

Identifying Relationship – Parent-Child

DB01_EID_01

DB01_EID_02

DB01_TblA_EID

DB01_TblM_ChldOfTblA_EID

Figure A-23. Any Identifying Parent-Child Relationship Maps to a Record-Level Entry
within the MasterLookup

As was highlighted above, under this new approach for using EIDs, there is no longer a
migration of keys from parent entities to child entities, since all the tables are
independent and there are no relationships among them. Instead, all relationships are
recorded in a lookup table. One thing to keep in mind is that business rules, previously
captured in entity relations, are now established by the entries in the lookup table and the
code written for the user-interfaces, forms, and queries.

Figure A-23 shows the mapping of an identifying parent-child relationship from the
traditional RDBMS to this new type of EID implementation for a new system. The
entity-level parent-child relationship is now recorded in the lookup table, here notionally
labeled DB01_MasterLookup, as pairs of entries for those records which stand in that
kind of relationship. The EID value and table name of the parent entity, DB01_TblA, are
recorded in DB01_EID_01 and DB01_Tbl01_Name, respectively. Similarly, the EID

 90

value and table name of the child entity, DB01_TblM_ChldOfTblA, are recorded in
DB01_EID_02 and DB01_Tbl02_Name, respectively. To find the children of a particular
record in DB01_TblA, the EID value of the child record is queried against
DB01_MasterLookup given the parent record EID, along with the table names of both the
parent and child tables. The result of the query contains the EIDs of the children entities,
which are used to identify the desired records back in the DB01_TblM_ChldOfTblA table.
Therefore, an identifying parent-child relationship is converted to a single pass through
the lookup table that retrieves the pertinent EIDs in the child table.

IMPLEMENTATION OF PARENT-CHILD-GRANDCHILD RELATIONSHIPS VIA EIDS AND
THE MASTERLOOKUP TABLE

DB01_TblA
DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblM_ChldOfTblA
DB01_TblA_Key (FK)
DB01_TblM_ChldOfTblA_Key

DB01_TblM_ChldOfTblA_Attr01
DB01_TblM_ChldOfTblA_Attr02
DB01_TblM_ChldOfTblA_Attr03

DB01_TblQ_ChldOfTblM
DB01_TblA_Key (FK)
DB01_TblM_ChldOfTblA_Key (FK)
DB01_TblQ_ChldOfTblM_Key

DB01_TblQ_ChldOfTblM_Attr01
DB01_TblQ_ChldOfTblM_Attr02

DB01_TblQ_ChldOfTblM

DB01_TblQ_ChldOfTblM_Attr01
DB01_TblQ_ChldOfTblM_Attr02

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblM_ChldOfTblA

DB01_TblM_ChldOfTblA_Attr01
DB01_TblM_ChldOfTblA_Attr02
DB01_TblM_ChldOfTblA_Attr03

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

Mapping IDEF1X Structures

DB01_TblQ_ChldOfTblM_EID

DB01_EID_01

DB01_EID_02

DB01_TblA_EID

DB01_TblM_ChldOfTblA_EID

DB01_EID_01

DB01_EID_02

Identifying Relationship – Cascading

Figure A-24. Any Identifying Parent-Child-GrandChild Relationship Maps to a Record-
Level Entry within the MasterLookup

Figure A-24 shows the mapping of a traditional cascading identifying relationship (left
side) into an implementation without any relationships among the tables and with all
records identified via globally unique EIDs (right side). This is, in essence, an extension
of the method described above for the case of an identifying parent-child relationship.
The cascading relationship is resolved into pairs of parent-child relationships. In this
example, the first pair, containing the parent-child relationship between DB01_TblA and
DB01_TblM_ChldOfTblA, is outlined in red. The second pair, containing the child-
grandchild relationship between DB01_TblM_ChldOfTblA and DB01_TblQ_ChldOfTblM,

 91

is outlined in blue. The relationship between each pair is recorded in
DB01_MasterLookup in exactly the same manner as it was described above for the
simple identifying parent-child relationship. Because the 'relationship' information is
encoded as pairs of entries in the DB01_MasterLookup table, the retrieval of data related
to each other in the form of parent-child pairs can be thought of as an iterative process.
Therefore, there is no limit to the levels of descendants that can be accessed via the
DB01_MasterLookup table. Furthermore, any cascade operation—updates, deletes,
etc.—can be done with the aid of the DB01_MasterLookup table and the appropriate SQL
command in the same iterative manner for the tables and records involved.

IMPLEMENTATION OF NON-IDENTIFYING PARENT-CHILD RELATIONSHIPS VIA EIDS
AND THE MASTERLOOKUP TABLE

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblM_ChldOfTblA

DB01_TblM_ChldOfTblA_Attr01
DB01_TblM_ChldOfTblA_Attr02
DB01_TblM_ChldOfTblA_Attr03

Mapping IDEF1X Structures

DB01_TblA
DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblM_ChldOfTblA
DB01_TblM_ChldOfTblA_Key

DB01_TblA_Key (FK)
DB01_TblM_ChldOfTblA_Attr01
DB01_TblM_ChldOfTblA_Attr02
DB01_TblM_ChldOfTblA_Attr03

DB01_EID_01

DB01_EID_02

DB01_TblA_EID

DB01_TblM_ChldOfTblA_EID

Non-Identifying Relationship – Parent-Child

Figure A-25. Any Non-Identifying Parent-Child Relationship Maps to a Record-Level Entry
within the MasterLookup

Figure A-25 shows the mapping of a non-identifying parent-child relationship. Because
this new system would employ EIDs as the primary key for all entities, there is no longer
a need to inherit identifiers from parent entities, that is, every record is uniquely
identified by its own EID. Therefore, a non-identifying parent-child relationship can be
mapped in exactly the same way as an identifying parent-child relationship where the
relationship is mapped as a single line in the DB01_MasterLookup table (see the
discussion above and Figure A-23).

 92

IMPLEMENTATION OF GENERALIZATIONS OF ANY DEPTH VIA EIDS AND THE
MASTERLOOKUP TABLE

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

Mapping IDEF1X Structures

DB01_TblC_SubOfTblA
DB01_TblA_Key (FK)

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03

DB01_TblD_SubOfTblC
DB01_TblA_Key (FK)

DB01_TblD_SubOfTblC_Attr01
DB01_TblD_SubOfTblC_Attr02

DB01_TblA
DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblC_SubOfTblA

DB01_TblC_SubOfTblA_Attr01
DB01_TblC_SubOfTblA_Attr02
DB01_TblC_SubOfTblA_Attr03

DB01_TblD_SubOfTblC

DB01_TblD_SubOfTblC_Attr01
DB01_TblD_SubOfTblC_Attr02

DB01_EID_01

DB01_EID_02

DB01_TblA_EID

DB01_EID_01

DB01_EID_02

Subtype-Hierarchy Relationship

DB01_TblC_SubOfTblA_EID

DB01_TblD_SubOfTblC_EID

Figure A-26. Any Generalization of Any Depth Maps to a Record-Level Entry within the
MasterLookup

A subtype hierarchy tree can be thought of as a cascade of Z-relationships, that is, a
parent record in a subtype hierarchy has either 0 or 1 corresponding records in the child
subtype entity. The mapping of this structure, shown in Figure A-26, is therefore
straightforward. The subtype hierarchy is nothing more than a restricted cascading
parent-child relationship identical to the one that was discussed above (See Figure A-23).

The record-keeping in DB01_MasterLookup is exactly the same as the one previously
described for the cascading identifying relationship. The Z-type restriction placed on the
subtype hierarchy can be controlled by the database administrator through the appropriate
code in the user interfaces and forms used to perform record manipulations, e.g., inserts
and deletes. Since the users can only access the data through these interfaces, the
business rule can, therefore, be easily enforced and the original Z-type restriction thereby
conserved.

As shown on the right hand of Figure A-26 above, a multilevel subtype hierarchy maps
once again to pair-wise entries in DB01_MasterLookup where DB01_TblA supertype
records are linked to subtype records in DB01_TblC_SubOfTblA. Likewise, supertype

 93

records in DB01_TblC_SubOfTblA are linked to subtype records in
DB01_TblD_SubOfTblC. It should be noted, however, that the use of EIDs makes it
possible, at the discretion of the database administrator, to create a link directly between
any two nodes on the subtype hierarchy.In our example, one can link the root entity
DB01_TblA and the leaf entity DB01_TblD_SubOfTblC with a direct entry in lookup
table, DB01_MasterLookup, thus shortening the search path.71

IMPLEMENTATION OF ASSOCIATIVE ENTITIES VIA EIDS AND THE MASTERLOOKUP
TABLE

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

DB01_TblA

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

Mapping IDEF1X Structures

DB01_TblATblG_Assn
DB01_TblA_Key (FK)
DB01_TblG_Key (FK)
DB01_TblATblG_Assn_Key

DB01_TblATblG_Assn_Attr01
DB01_TblATblG_Assn_Attr02
DB01_TblATblG_Assn_Attr03

DB01_TblG
DB01_TblG_Key

DB01_TblG_Attr01
DB01_TblG_Attr02
DB01_TblG_Attr03

DB01_TblA
DB01_TblA_Key

DB01_TblA_Attr01
DB01_TblA_Attr02
DB01_TblA_Attr03
DB01_TblA_Attr04

DB01_TblG

DB01_TblG_Attr01
DB01_TblG_Attr02
DB01_TblG_Attr03

DB01_TblATblG_Assn

DB01_TblATblG_Assn_Attr01
DB01_TblATblG_Assn_Attr02
DB01_TblATblG_Assn_Attr03

DB01_EID_01

DB01_EID_02

DB01_TblA_EID

Associative Entities

DB01_TblG_EID

DB01_TblATblG_Assn_EID

Figure A-27. Any Associative Entity Maps to a Record-Level Entry within the
MasterLookup

71 This may not be as unusual as one would initially think. For example, in the LC2IEDM some

hierarchies contain multiple intermediate nodes whose sole purpose is to create nodes for the next level.
These intermediate node entities tend to contain very little added information other than the category
code that serves as a discriminant for the subtypes. With the use of EIDs discussed here, one could make
the retrieval of data from the leaf much faster since there is no inherent advantage in going through the
intermediate supertypes. Thus, for example, in a given situation records in OBJECT-ITEM could be
directly linked to the appropriate records in UNIT, BRIDGE, etc., without need to go through
ORGANISATION or FACILITY.

 94

Figure A-27 depicts the mapping of an associative entity. An association represents a
many-to-many relationship between two entities (therefore also called a many-to-many
breaker), in this case, DB01_TblA and DB01_TblG. This relationship is resolved as a pair
of one-to-many relationships between the parent entities, DB01_TblA and DB01_TblG,
and the child associative entity, DB01_TblATblG_Assn. Indeed, the mapping of this type
of data structure to an EID-based system consists of recording exactly two parent-child
relationships of the kind that has been discussed before.

The right hand side of Figure A-27 shows the full tracing via the DB01_MasterLookup
table between the two parent entities and the associative entity. Each record in
DB01_TblATblG_Assn contains two entries in DB01_MasterLookup table. The first entry
represents the relationship between DB01_TblA and DB01_TblATblG_Assn, and the
second entry represents the relationship between DB01_TblG and DB01_TblATblG_Assn.
Following the red arrows representing the first entry, we are able to extract the EID of
DB01_TblATblG_Assn. Then, using the second entry marked by blue arrows, we can
complete the path to DB01_TblG. Of course, the tracing of the paths is completely
flexible: backwards from DB01_TblG to DB01_TblA, or from the center, i.e., out from
DB01_TblATblG_Assn to DB01_TblA and DB01_TblG.

IMPLEMENTATION OF DOUBLE-ASSOCIATIVE RELATIONS VIA EIDS AND THE
MASTERLOOKUP TABLE

Alternative 1

The double-association is a special extension of the examples previously described. In a
simple associative relationship, such as the one schematically depicted in Figure A-27
above, the ordinate and subordinate entities are easily identified because the associative
entity DB01_TblATblG_Assn links two different entities, namely DB01_TblA and
DB01_TblG.

However, in a double-association, this is clearly not true, i.e., the two parents coalesce
into one. Therefore, in the IDEF1X model, the subordination information, i.e., which
record corresponds to the parent and which record corresponds to the child, is captured
by role-naming the migrated keys, namely, DB01_Ordinate_TblA_Key(FK) for the parent
record and DB01_Subordinate_TblA_Key(FK) for the child record (see the IDEF1X
diagram on the left side of Figure A-28).

 95

D B01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

DB01_TblA

D B01_TblA_Attr01
D B01_TblA_Attr02
D B01_TblA_Attr03
D B01_TblA_Attr04

M apping ID EF1X S tructures

DB01_TblATblA_Assn

DB01_TblATblA_Assn_Attr01
DB01_TblATblA_Assn_Attr02
DB01_TblATblA_Assn_Attr03
DB01_TblATblA_Assn_Attr04

D B01_TblA
D B01_TblA_Key

D B01_TblA_Attr01
D B01_TblA_Attr02
D B01_TblA_Attr03
D B01_TblA_Attr04

D B01_TblATblA_Assn
D B01_Ordinate_TblA_Key (FK)
D B01_Subordinate_TblA_Key (FK)
D B01_TblATblA_Assn_Key

D B01_TblATblA_Assn_Attr01
D B01_TblATblA_Assn_Attr02
D B01_TblATblA_Assn_Attr03
D B01_TblATblA_Assn_Attr04 DB01_DoubleAssn

DB01_DoubleAssn_Ordinality

DB01_EID _01

DB01_EID _02

D B01_TblA _EID

D ouble-Associative Entities

DB01_TblATblA_A ssn_EID

DB01_D oubleAssn_EID

Figure A-28. Any Double Associative Entity Maps to a Record-Level Entry within the
MasterLookup

When one introduces EIDs for all records and removes the traditional relationships
between tables, however, the information contained in the role-naming key does not port
over, since the EIDs carry no meaning or information whatsoever. Therefore, one must
recreate this information somehow. The mapping shown on the right side of Figure A-28
is only one of many possible solutions to resolve the ambiguity of the EID roles, i.e.,
which one ought to be seen as the EID of the parent record and which one is the
corresponding EID for the child record.

The method shown here requires the creation of a new entity, which is shown notionally
as DB01_DoubleAssn in Figure A-28. It is a very simple table that records which EID is
the ordinate EID and which one is the subordinate EID. The complete mapping is
represented as three pairs of entries in the DB01_MasterLookup table: between
DB01_TblA and DB01_TblATblA_Assn (solid red and blue arrows), between
DB01_TblATblA_Assn and DB01_DoubleAssn (dotted red and blue arrows), and between
DB01_TblA and DB01_DoubleAssn (dashed red and blue arrows).

Thus, to find all the instances in DB01_TblA that are subordinate to a given entry in
DB01_TblA, one would query the DB01_MasterLookup table for all the EID values of
DB01_TblATblA_Assn linked to that instance. Those EID values of
DB01_TblATblA_Assn would in turn point to all the associated instances of
DB01_DoubleAssn and show the role for that association. Similarly, the EID values for
the instances in DB01_TblA also are related to a role recorded in DB01_DoubleAssn.
Therefore, once the EID for the appropriate role—in our example, 'subordinate'—has

 96

been found, it can be used to retrieve the instances in DB01_TblA for which the initial
record is the 'ordinate'.

These entries completely exhaust all the search paths, enabling queries in either direction
and from any point. The number of entries in DB01_MasterLookup can be relaxed to
four if the search is always performed in one direction, i.e., either from ordinate to
subordinate or vice versa.

Alternative 2

The discussion under Alternative 1 above assumes that one creates only a single record
in DB01_TblATblA_Assn per association between instances of the parent entity
DB01_TblA. Thus two instances in DB01_TblA, namely, instance a and instance b,
which stand in an ordinate-subordinate relationship captured in DB01_TblATblA_Assn as
instance c, would show up in the DB01_MasterLookup as two pairs (instance a,
instance c) and (instance b, instance c). And, as was stated above, under this
circumstances there is no way to figure out whether instance a is the ordinate or the
subordinate in the association. Through the use of DB01_DoubleAssn, one can
disambiguate the roles of instance a and instance b.

Name

Unit 1

Unit 2 Unit 3 Unit 4

Unit 5 Unit 6 Unit 7

FFF0001 Unit 1
FFF0002 Unit 2
FFF0003 Unit 3
FFF0004 Unit 4
FFF0005 Unit 5
FFF0006 Unit 6
FFF0007 Unit 7

DB01_TblA
Name

DB01_TblATblA_Assn

AAA0001 Unit 1 to Unit 2
AAA0002 Unit 1 to Unit 3
AAA0003 Unit 1 to Unit 4
AAA0004 Unit 2 to Unit 1
AAA0005 Unit 3 to Unit 1
AAA0006 Unit 4 to Unit 1

Name
DB01_DoubleAssn

DDD0001 ordinate
DDD0002 ordinate
DDD0003 ordinate
DDD0004 subordinate
DDD0005 subordinate
DDD0006 subordinate

EIDEID EID

Figure A-29. Alternative Approach for Handling a Double-Association via MasterLookup

A slightly different approach would be to create two instances in DB01_TblATblA_Assn,
namely, one for the relation instance a is ordinate for instance b, and another for the

 97

relation instance b is subordinate to instance a. The entries in DB01_DoubleAssn
would still be needed to label the role of the instances of DB01_TblA and would act as a
filter, i.e., to prevent that the parent record be shown as subordinate to the child record.

However, this approach may permit a simplified logic to discern which records in
DB01_TblA are subordinate to another instance in DB01_TblA, since there would be no
need to relate the entries in DB01_TblA to the entries in DB01_DoubleAssn as is done
under Alternative 1 above. Figure A-29 above shows a simple command structure among
7 notional units. If one were to record as one entry in the DB01_TblATblA_Assn the
instance where the relation is read from ordinate to subordinate, and as a different entry
when the relation is read from subordinate to ordinate, then for the first group of entities
in Figure A-29, namely, Unit 1 through 4, there would be a total of 6 entries.

DB01_MasterLookup

EID_01 DB01_Tbl01_Name EID_02 DB01_Tbl02_Name

FFF0001 DB01_TblA AAA0001 DB01_TblATblA_Assn

FFF0001 DB01_TblA AAA0002 DB01_TblATblA_Assn

FFF0001 DB01_TblA AAA0003 DB01_TblATblA_Assn

FFF0002 DB01_TblA AAA0004 DB01_TblATblA_Assn

FFF0003 DB01_TblA AAA0005 DB01_TblATblA_Assn

FFF0004 DB01_TblA AAA0006 DB01_TblATblA_Assn

AAA0001 DB01_TblATblA_Assn FFF0002 DB01_TblA

AAA0002 DB01_TblATblA_Assn FFF0003 DB01_TblA

AAA0003 DB01_TblATblA_Assn FFF0004 DB01_TblA

AAA0004 DB01_TblATblA_Assn FFF0001 DB01_TblA

AAA0005 DB01_TblATblA_Assn FFF0001 DB01_TblA

AAA0006 DB01_TblATblA_Assn FFF0001 DB01_TblA

AAA0001 DB01_TblATblA_Assn DDD0001 DB01_DoubleAssn

AAA0002 DB01_TblATblA_Assn DDD0002 DB01_DoubleAssn

AAA0003 DB01_TblATblA_Assn DDD0003 DB01_DoubleAssn

AAA0004 DB01_TblATblA_Assn DDD0004 DB01_DoubleAssn

AAA0005 DB01_TblATblA_Assn DDD0005 DB01_DoubleAssn

AAA0006 DB01_TblATblA_Assn DDD0006 DB01_DoubleAssn

Let us assume that one reads the information contained in DB01_DoubleAssn as
expressing the role of the record linked to its corresponding instance in
DB01_TblATblA_Assn. Then the sample entries in DB01_MasterLookup above could be
used to find all the subordinate Units of Unit 1 by retrieving first all the EID values
linked to the EID FFF0001 where the DB01_Tbl01_Name is equal to DB01_TblA and the

 98

DB01_Tbl02_Name is equal to DB01_TblATblA_Assn. The values retrieved, namely
AAA0001, AAA0002, and AAA0003, could then be readily used to check what kind of role
the record with EID equal to FFF0001 was playing in that association. One could simply
retrieve DDD0001, DDD0002, and DDD0003 and obtain the values of the role attribute
in DB01_DoubleAssn—which in this case would all be 'ordinate'. The same values,
namely AAA0001, AAA0002, and AAA0003 from DB01_TblATblA_Assn, can also be used
to query back the records related to it in DB01_TblA. Doing this in the above example
would retrieve FFF0002, FFF0003, and FFF0004, which are the EID values of Unit 2,
Unit 3 and Unit 4, respectively.

If instead of querying DB01with the EID value of Unit 1, one queries it with an EID
value equal to FFF0004, then the DB01_MasterLookup would show only one entry for
DB01_TblATblA_Assn namely, AAA0006. This entry is related to the entry with EID
DDD0006 in the table DB01_DoubleAssn with role 'subordinate', and to the entry with
EID value FFF0001 in DB01_TblA. This would mean that Unit 4 stands in a subordinate
relationship to Unit 1, and, furthermore, that it does not have any more relationships
either as ordinate or as subordinate to any other entry in DB01_TblA.

Alternative 3

The multiple passes necessitated by either Alternative 1 or Alternative 2 are the result of
making the DB01_MasterLookup as simple as possible, namely, just four attributes and
nothing else. For the case of double associative entities, one could consider the addition
of another attribute. This attribute would capture the role of a given instance of
DB01_TblA in the association table DB01_TblATblA_Assn, therewith bypassing
completely the need for the DB01_DoubleAssn table.

Since in many cases the majority of the data resident in databases is not in double
associative entities, this would mean that the bulk of the entries in the
DB01_MasterLookup would have no value assigned for the role attribute. Though
wasteful, this approach, coupled with the idea of assigning a different EID for the
associations according to the direction in which they are read, may significantly reduce
query times when traversing a large DB01_MasterLookup in search for information such
as force structure, materiel components listed as subcomponents of larger assemblies,
etc.72

72 At the time of writing this analysis, only Alternative 1 has been tested in an information system using

LC2IEDM, as the physical schema implemented in SQL Server 2000, and a Web-based interface
controlling the logic for access to the data.

 99

ILLUSTRATIVE EXAMPLE USING EIDS AND THE MASTERLOOKUP TABLE IN
LC2IDEM: UNIT HOLDING

In the LC2IEDM, Holding can be used to represent the on-hand inventory of a military
unit. For example, using the Holding table, we can find out the type and quantity of a
class of materiel in a unit’s inventory: small arms, ammunition, food supplies, fuel,
vehicles, etc. We can also use Holding to find out the type and quantity of personnel in
the unit by rank and specialty.

Object-Item
Object-Item-Id

Organization
Object-Item-Id (FK)

Unit
Object-Item-Id (FK)

Holding
Object-Item-Id (FK)
Object-Type-Id (FK)
Holding-Index

Object-Type
Object-Type-Id

Person-Type
Object-Type-Id (FK)

Materiel-Type
Object-Type-Id (FK)

Object-Item Object-Type

Organization

Unit

Holding

Materiel-Type

Person-Type

MasterLookup

Tbl01_Name

Tbl02_Name

Object-Item-EID Object-Type-EID

Organization-EID

Unit-EID

Holding-EID

Materiel-Type-EID

Person-Type-EID

EID_01

EID_02

Figure A-30. Mapping of LC2IEDM Holding using EID and MasterLookup
Figure A-30 shows the IDEF1X diagram for the portion of LC2IEDM that includes
Holding. As shown in the upper part of Figure A-30, the entity Holding is an associative
entity that contains data on the quantity of a particular Object-Type in the inventory of
an Object-Item—in this case a military unit. Note that Units are part of the Object-Item
hierarchy, and, therefore, we can retrieve the Unit information represented by this
generalization. Similarly, through Object-Type, we can retrieve the classes of materiel
and types of personnel the unit has through the Object-Type hierarchy that contains both
Materiel-Type and Person-Type. Converting this type of entity-relationship structure to
an EID-based structure with lookup table is straightforward. The lower part of Figure A-
30 shows how the LC2IEDM portion for Holding would be represented. As discussed in
the preceding paragraphs, making the EID the primary key for all entities transforms
them into independent ones. All records are now identified by globally unique EIDs. All

 100

logical links among the entities are recorded in the MasterLookup table (see lower right
hand corner of Figure A-30).

Figure A-31 below shows a portion of the MasterLookup table where the various types of
relationships discussed previously in this section are captured through the entries therein.
The Object-Item subtype hierarchy represents a generalization of multiple levels. Its
mapping to the new structure corresponds to a cascading relationship (see Figure A-26
above). The Object-Type hierarchy is an example of multiple subtypes on a single level.
This is mapped simply to parent-child relationships with Z-cardinality (see also Figure A-
24 above). Lastly, the Holding is a normal association, and its mapping corresponds to
two parent-child relationships as shown in Figure A-27 above.

Unit One

Unit Two

Materiel Type Data

Person Type Data

1st Unit One Material Type Holding

1st Unit One Person Type Holding

2nd Unit One Person Type Holding

3rd Unit One Person Type Holding

1st Unit Two Person Type Holding

2nd Unit Two Person Type Holding

3rd Unit Two Person Type Holding

1st Unit Two Material Type Holding

2nd Unit Two Material Type Holding

Materiel Type #1
Unit One

Unit One

Unit One

Unit One

Unit Two

Unit Two

Unit Two

Unit Two

Unit Two

Person Type #1

Person Type #3

Person Type #5

Materiel Type #1

Materiel Type #3

Person Type #2

Person Type #3

Person Type #4

Tbl01_Name Tbl02_Name

1F08D701 Object-Item 1F08D702 Organization

1F08D702 Organization 1F08D703 Unit

1F08D701 Object-Item 1F08D703 Unit

1F08D704 Object-Item 1F08D705 Organization

1F08D705 Organization 1F08D706 Unit

1F08D704 Object-Item 1F08D706 Unit

1F08D707 Object-Type 1F08D708 Materiel-Type

1F08D709 Object-Type 1F08D70A Materiel-Type

1F08D70B Object-Type 1F08D70C Materiel-Type

1F08D70D Object-Type 1F08D70E Materiel-Type

1F08D70F Object-Type 1F08D710 Person-Type

1F08D711 Object-Type 1F08D712 Person-Type

1F08D713 Object-Type 1F08D714 Person-Type

1F08D715 Object-Type 1F08D716 Person-Type

1F08D717 Object-Type 1F08D718 Person-Type

1F08D701 Object-Item 1F08D719 Holding

1F08D707 Object-Type 1F08D719 Holding

1F08D701 Object-Item 1F08D71A Holding

1F08D70F Object-Type 1F08D71A Holding

1F08D701 Object-Item 1F08D71B Holding

1F08D713 Object-Type 1F08D71B Holding

1F08D701 Object-Item 1F08D71C Holding

1F08D717 Object-Type 1F08D71C Holding

1F08D704 Object-Item 1F08D71D Holding

1F08D707 Object-Type 1F08D71D Holding

1F08D704 Object-Item 1F08D71E Holding

1F08D70B Object-Type 1F08D71E Holding

1F08D704 Object-Item 1F08D71F Holding

1F08D711 Object-Type 1F08D71F Holding

1F08D704 Object-Item 1F08D720 Holding

1F08D713 Object-Type 1F08D720 Holding

1F08D704 Object-Item 1F08D721 Holding

1F08D715 Object-Type 1F08D721 Holding

EID_01 EID_02

Figure A-31. Example of MasterLookup entries for Unit Holding
The green entries correspond to the Object-Item subtype hierarchy. For example, the
first three lines contain the entries for “Unit One.” The first line is the first level of the
hierarchy which reads that Organization 1F08D702 is the subtype of Object-Item
1F08D701. The second line is the second level of the hierarchy which reads that Unit
1F08D703 is the subtype of Organization 1F08D702. The third line represents an
optional relationship that directly links Object-Item to Unit which reads that Unit
1F08D703 is the subtype of Object-Item 1F08D701. The entries for “Unit Two” follow
in the exact same manner.

 101

The next group of entries in blue are the entries for the Materiel-Type branch of the
Object-Type hierarchy. For example, the first line simply says that Materiel-Type
1F08D708 is the subtype of Object-Type 1F08D707.

The next group of entries in purple are the entries for Person-Type, i.e., the second
branch of the Object-Type hierarchy shown in Figure A-30 above. For example, the first
line simply says that Person-Type 1F08D710 is the subtype of Object-Type 1F08D70F.

Finally, the rest of the entries, which occur in pairs, are the associations. Let us take the
entry labeled “2nd Unit Two Materiel Type Holding” in Figure A-29 for detailed
examination. The first line of the pair reads that Object-Item 1F08D704 has the Holding
1F08D71E. The second line reads that Object-Type 1F08D70B is the subject of Holding
1F08D71E. Using the entries for the Object-Item subtype hierarchy, we can see Unit
1F08D706 is the subtype of Object-Item 1F08D704 (from line 6). Furthermore, using
the entries for the Object-Type hierarchy, we see that Materiel-Type #3 1F08D70C is the
subtype of Object-Type 1F08D70B (from line 9). Therefore, we can conclude that “Unit
Two” has in its inventory “Materiel Type #3,” the quantity of which is recorded in the
associated Holding.

Using the same process, the other pairs of Holding entries can be resolved to identify the
full inventory, both personnel and materiel, for both “Unit One” and “Unit Two.”

ILLUSTRATIVE EXAMPLE USING EIDS AND THE MASTERLOOKUP TABLE IN
LC2IDEM: ORGANIZATIONAL HIERARCHY

The example discussed in Figure A-30 shows the required mappings for all the IDEF1X
structures, except the one needed to represent a double association. Figure A-32 shows a
good example for the use of a double association. The identification of organizational
hierarchy (e.g., force structure, chain of command) is vital for C2 purposes. The
LC2IEDM entity used to record this type of organization to organization relationships,
such as their reporting hierarchy, is the Organization-Organization-Association.

The IDEF1X diagram in Figure A-31 shows the portion of the LC2IEDM that contains
Org-Org-Assn. Once again, we see the Object-Item subtype hierarchy used in the
identification of Unit that we used in the previous example. The double association, Org-
Org-Assn, is an associative entity that has Org as both the subject and the object.
Therefore, in order to distinguish the subject and the object, the migrated foreign keys
have been role-named for identification. The mapping to an EID-based structure with a
lookup table requires an additional entity to record the subject/object role. This is shown
in Figure A-32 with the entity highlighted in green. As the previous example in Figure
A-30 shows, with the introduction of EIDs as the primary keys, all the entities become
independent and their records are uniquely identified by EIDs alone. The relationship
between entities is recorded in MasterLookup, and any role information for a double
association is recorded in DoubleAssn.

 102

Obj-Item
Obj-Item-ID

Org
Obj-Item-ID (FK)

Unit
Obj-Item-ID (FK)

Org-Org-Assn
Org-Org-Assn-Subj-Org-ID (FK)
Org-Org-Assn-Obj-Org-ID (FK)
Org-Org-Assn-Index

Obj-Item

Org

Unit

Org-Org-Assn

DoubleAssn

DoubleAssn_Ord

MasterLookup

Tbl01_Name

Tbl02_Name

Obj-Item-EID

Org-EID

Unit-EID

Org-Org-Assn-EID

DoubleAssn-EID
EID_01

EID_02

Figure A-32. Mapping of LC2IEDM Organization-Organization-Association using EID and
MasterLookup

Figure A-33 shows the organizational hierarchy we want to capture and the
corresponding entries in MasterLookup. This is a simple example where “Unit One” is
the parent or commanding unit of “Unit Two” (represented by Org-Org-Assn #1), and
“Unit Two” is the parent or commanding unit of “Unit Three” (represented by Org-Org-
Assn #2). The green entries in the MasterLookup table correspond to the Object-Item
subtype hierarchy that captures Unit information. The rest of the entries, colored in
brown, record the double association, which occurs in groups of six.

Let us take a detailed examination of the first set of these entries for Org-Org-Assn #1.
The first line reads that Org 1F08D702 has Org-Org-Assn 1F08D725. The second line
reads that Org 1F08D705 also has Org-Org-Assn 1F08D725. Notice that, so far, the role
cannot be inferred. The next pair of entries says that Org-Org-Assn 1F08D725 has a
"role" record DoubleAssn 1F08D726 and that Org 1F08D702 also has a "role" record
DoubleAssn 1F08D726. Tracing back to DoubleAssn 1F08D726, we find that the "role"
is recorded as “Ordinate.” Therefore, we can now infer that Org 1F08D702 is the
ordinate record for Org-Org-Assn 1F08D725. If we stop at this point with four entries in
MasterLookup, we have successfully captured the double association relationship in the
ordinate-to-subordinate direction. However, if we include the next pair, then the
relationship is recorded in both the ordinate-to-subordinate and subordinate-to-ordinate

 103

direction. This pair says that Org-Org-Assn 1F08D725 has a "role" record DoubleAssn
1F08D727 and that Org 1F08D705 also has a "role" record DoubleAssn 1F08D727.
Tracing back to DoubleAssn 1F08D727, we find that the "role" is recorded as
“Subordinate.” Therefore, Org 1F08D705 is the subordinate record for Org-Org-Assn
1F08D725.

Unit One

Unit Two

Org-Org-Assn #1
DoubleAssn-Ord

1F08D726 Ordinate
1F08D727 Subordinate

1F08D729 Ordinate

1F08D72A Subordinate

Unit Three

Org-Org-Assn #2

Unit One

Unit Two

Unit Three

Org-Org-Assn #1: Unit One is the PARENT of Unit Two

Org-Org-Assn #2: Unit Two is the PARENT of Unit Three

Tbl01_Name Tbl02_Name

1F08D701 Obj-Item 1F08D702 Org

1F08D702 Org 1F08D703 Unit

1F08D701 Obj-Item 1F08D703 Unit

1F08D704 Obj-Item 1F08D705 Org

1F08D705 Org 1F08D706 Unit

1F08D704 Obj-Item 1F08D706 Unit

1F08D722 Obj-Item 1F08D723 Org

1F08D723 Org 1F08D724 Unit

1F08D722 Obj-Item 1F08D724 Unit

DoubleAssn-EID

EID_01 EID_02

1F08D702 Org 1F08D725 Org-Org-Assn

1F08D705 Org 1F08D725 Org-Org-Assn

1F08D725 Org-Org-Assn 1F08D726 DoubleAssn

1F08D702 Org 1F08D726 DoubleAssn

1F08D725 Org-Org-Assn 1F08D727 DoubleAssn

1F08D705 Org 1F08D727 DoubleAssn

1F08D705 Org 1F08D728 Org-Org-Assn

1F08D723 Org 1F08D728 Org-Org-Assn

1F08D728 Org-Org-Assn 1F08D729 DoubleAssn

1F08D705 Org 1F08D729 DoubleAssn

1F08D728 Org-Org-Assn 1F08D72A DoubleAssn

1F08D723 Org 1F08D72A DoubleAssn

Figure A-33. Example of MasterLookup entries for Organizational Hierarchy

Finally, taking all the information together, we can say that Org 1F08D702, which is Unit
1F08D703 (second line from the top) or “Unit One,” is the parent organization to Org
1F08D705, which is Unit 1F08D706 (fifth line from the top) or “Unit Two.”
Furthermore, this relationship is subject to the conditions set forth in Org-Org-Assn
1F08D725. In LC2IEDM different Org-Org-Assn records can be used to identify
different types of organization to organization relationships, as encoded by the
enumerated domains of the category and subcategory codes. For example, one set of
records may be used to capture the administrative hierarchy while another set is used to
capture the command hierarchy; one set may be used to capture the present command
structure while another set can be used for recording a planned modification schedule to
take place in the next fiscal year.

 104

D. PERFORMANCE CONSIDERATIONS WHEN USING ORG IDs IN NEW
SYSTEMS

When using EIDs such as ORG ID for record identification in participating information
systems within the DoD enterprise, one of the most important criteria is response time for
operations dependent on access to records tagged with such identifiers.

Performance degradation may be due to the following:

• structure of the EIDs themselves

• choice of implementation of the record identifier within a particular RDBMS—
either as primary key or as alternate key

With respect to the first possible impact of using EIDs as the record identifier, the
following alternatives can be explored:

• if performance degradation arises from a lack of native SQL data types in the
RDBMS to store the EID, then either indexing or hash tables may be appropriate.

For example, choosing EIDs as 64-bit long integers may not be supported by older
RDBMSs, such as Microsoft SQL 7.0. Desktop database applications such as Microsoft
Access may record the EIDs using some other form of internal representation, e.g., the
currency data type.

MasterLookup
for JTA Area

DB01_TblA

DB01_TblB

DB01_TblC

DB01_TblD

C2
Area JTA

Area Plans
Area

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

MasterLookup
for Plans Area

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

MasterLookup
for C2 Area

DB01_MasterLookup

DB01_Tbl01_Name

DB01_Tbl02_Name

DB01_TblA_EID

DB01_TblB_EID

DB01_TblC_EID

DB01_TblD_EID
DB01_EID_01

DB01_EID_02

DB01_EID_01

DB01_EID_02

DB01_EID_01

DB01_EID_02

Figure A-34. Segmentation of the MasterLookup by Area
as a Means to Prevent Performance Degradation

 105

If EIDs are implemented with commercial products, such as Microsoft database
Replication Identifier (GUID) which is a 128 bit long integer, some databases may be
able to record the EIDs only as the ASCII string corresponding to the Hexadecimal
representation of the GUID values. In such cases, queries with large data sets may be
less efficient than if the EIDs were natively stored as numeric values. Indexing or hash
tables may be an alternative to ameliorate the problem of unacceptably long response
times.

A second possible source of performance degradation is the use of EIDs as alternate keys
or primary keys in conjunction with the regular structuring of relationships—identifying,
non-identifying and supertype-subtype hierarchies. However, no special performance
degradation should occur because the keys used are EIDs rather than keys unique at the
table level only. If relationships are captured at the record level rather than at the table
level, then the following two alternatives can be explored to prevent performance
degradation:

• segmentation of the data encoding the record-level relationships by area.

EID_1 DB01_Tbl1 EID_2 DB01_Tbl2

DB01_TblA
DB01_TblA
DB01_TblA
DB01_TblA
DB01_TblA
DB01_TblA
DB01_TblA
DB01_TblA
DB01_TblA
DB01_TblD
DB01_TblD
DB01_TblD
DB01_TblD
DB01_TblD
DB01_TblD
DB01_TblD
DB01_TblD
DB01_TblC
DB01_TblC
DB01_TblC
DB01_TblC

DB01_TblA
DB01_TblD
DB01_TblD
DB01_TblC
DB01_TblA
DB01_TblA
DB01_TblB
DB01_TblB
DB01_TblA
DB01_TblC
DB01_TblC
DB01_TblC
DB01_TblD
DB01_TblD
DB01_TblB
DB01_TblC
DB01_TblA
DB01_TblD
DB01_TblA
DB01_TblA
DB01_TblC

DB01_TblA

DB01_TblB

DB01_TblC

DB01_TblD

DB01_MasterLookup 1

Record Level Segmentation

Military Units
Equipment
Personnel

DB01_MasterLookup

_EID_01
D

01_EID_02
D

3

DB01_MasterLookup

01_EID_02
D

2

01_MasterLookup

B01_Tbl01_Name

DB01_Tbl02_Name

1

MasterLookup 1 (Operational Command)
MasterLookup 2 (Planned Reorganization)

FF013401
FF013402
FF013303
FF018405
FF013495
FF063409
FF013607
FF043402
FF093406
FF019404
FF013908
FF063402
FF053403
FF073705
FF073303
FF063909
FF053808
FF043408
FF093402
FF017404
FF077401

FF073401
FF063402
FF017303
FF098405
FF043495
FF083409
FF013407
FF093402
FF033406
FF069404
FF053908
FF043402
FF073403
FF072705
FF023303
FF023909
FF073808
FF093408
FF083402
FF057404
FF027401

DB01_TblA_EID

DB01_TblB_EID

DB01_TblC_EID

DB01_TblD_EID

DB01
B01_Tbl01_Name

DB
B01_Tbl02_Name

DB01_EID_01
DB01_Tbl01_Name
DB

B01_Tbl02_Name

DB

DB01_EID_01
D
DB01_EID_02

Figure A-35. Segmentation of the MasterLookup at Record-Level
as a Means to Prevent Performance Degradation

Instead of one large lookup table where the data for all records reside, multiple lookup
tables may be used to capture information pertinent to C2 operations. A different lookup

 106

table also may be used for planning data or technical architecture data. Figure A-34
above depicts how segmentation of the lookup table by area can ameliorate performance
degradation in a given implementation.

The second approach that may be explored to prevent performance degradation is:

• segmentation of the data encoding the record-level relationships by record.

Again, instead of implementing a single large lookup table to relate the EIDs of the
records related to each other in some form, multiple lookup tables may contain the EIDs
for the relationships segmented according to specific criteria. Figure A-35 depicts the
approach for record-level segmentation of the lookup table.

For example, if military units, equipment and personnel are related to other military units,
equipment and personnel under operational command, and they are also related to each
other under future reorganization plans, then the owner of the information system may
maintain two different lookup tables.

The information system interface will search one or the other lookup table based on the
entry point into the system by a user or another external system. For example, if the
system is set up to provide information via the web, e.g., as a web portal, then the system
knows which interface is initiating the query and code behind each page can be tailored
so that the system automatically searches the appropriate lookup table. Additional
measures may include dynamic resorting of the lookup table to rank relationships based
on the frequency with which they are used.For instance, they may be placed at the
beginning of the lookup table rather than reside by entry order within it.

 107

E. CONSIDERATIONS ON LOADING EID VALUES INTO LEGACY SYSTEMS

The previous sections have shown the different alternatives for implementing EIDs such
as ORG-IDs both in legacy as well as in new systems. The discussion shows that EIDs
can be introduced quite readily in legacy databases as an alternate key with minimal or no
impact to the information system. Basically all that is required is to run an SQL script
against the physical schema implemented in a given RDBMS that alters every table and
inserts a new attribute called EID.73 Modifications to legacy systems in which the EID is
used only as the primary key of independent entities is slightly more complex. But since
the number of such entities generally tends to be small, it is probably not something
requiring inordinate amounts of effort and time.74

Assuming the above statements are basically correct, it becomes clear that the issue is no
longer the modification to the schema, either in terms of additional attributes or in terms
of key structure changes, but the loading of the legacy data into a modified target system
that has adopted EIDs.

Case 1.

If the modification to the database physical schema consists in the addition of an EID
attribute to the RDBMS tables that can act as an alternate key, then the assignment of
EIDs can be conducted also by, for example, a simple SQL script performing a series of
INSERT VALUES operations for each table. Here again the mechanics of the process
present no major difficulties.

Clearly, whether the EID is a 128 bit number generated by a commercial application such
as Microsoft's GUID generator, or whether it is a 64 bit number created by first obtaining

73 The simplest SQL command that accomplishes this has the general form ALTER TABLE %TABLE

NAME% ADD (%ATTRIBUTE% %SQL DATATYPE%); For example, to add in an ORACLE
database the attribute EID to a table called DB01_TblA with SQL data type set to NUMBER (20), one
would execute the following SQL script:

ALTER TABLE DB01_TblA

ADD (EID NUMBER(20));

If the database has N tables, and all of them are meant to contain EIDs then one needs to execute N such
statements. Setting other constraints for the EID attribute can also be accomplished by using more
elaborate versions of the ALTER TABLE command, e.g., setting the NOT NULL property to make it
mandatory, etc. Irrespective of the form chosen for the ALTER TABLE command, it is arguably a
relatively straightforward operation that can be performed by the database administrator quite readily at
the appropriate time—for example during the downtime scheduled for system maintenance.

Since in the case of insertion of EIDs in legacy systems as alternate keys the new EID attribute is not
involved in any of the procedures stored in the database, this alteration of the physical schema of the
database by itself carries minimal or no risk to the overall operation of the information system using the
database as its data store.

74 Most physical schemas are currently generated from logical data models maintained separately. In the
case of substantial modifications to the database structure, it is probably more efficient to go back
directly to the tool where the model is maintained, carry out the alterations to the structures, and then
forward-engineer a new SQL script to create the instance of the database.

 108

a centrally controlled 32 bit EID seed and concatenating it with a sequentially increasing
second 32 bit that is locally managed, or whether the EID is produced by any other
mechanism that ensures the global uniqueness of the EID, these EIDs would guarantee
that every record in every database so modified possesses a record identifier that does not
repeat elsewhere.

However, if the various information systems of the enterprise were to conduct this type of
EID assignments without any coordination among themselves, then the overall benefits of
adopting EIDs would be substantially reduced, since now we have gone from a semantic
and syntactic stove-piping to something that looks like identifier stove-piping. In other
words, even though the records now can be uniquely identified, System A could not
readily reuse the data stored in System B via the EID mechanism because even if both
systems are tracking, for example, the same classes of materiel, the EIDs in System A
would be different from those used in System B. If System B queries System A using its
own EIDs it would not be able to retrieve any data because System A does not know of
the EIDs that System B is using, and vice versa.75

The preceding paragraphs clearly show that there is a need to institutionalize a series of
'authoritative data sources' managed by those agencies and organizations whose business
is to create the new instances of, for example, materiel classes, occupational specialties,
etc. Instead, all information systems in the DoD enterprise can use the same values of the
EIDs for retrieving or sending data pertinent to those instances efficiently and without
the risk of creating a semantic disconnect.

Case 2.

If the EIDs are now used as the primary keys in a legacy system as discussed in Section
B.2 (see Figures A-13 through A-17), the impact to the RDBMS is more substantial. Any
stored procedure based on the old keys—now treated as alternate keys—may be
impacted. In addition, the insertion of values for the new keys requires more care, since
EID values in parent entities must match the values loaded in child entities where they
migrate as foreign keys. This avoids referential integrity problems when reloading
legacy data into the modified physical schema.

But aside from the more time-consuming aspect of loading EID values that must satisfy
referential integrity constraints, the potential for identifier stove-piping is also present
here. Therefore, what was said in terms of the need for coordinating 'authoritative data
sources' applies with equal force to Case 2 as it did for Case 1 discussed above.

75 There is, of course, a great advantage in having at least the same structure for the EIDs, be it a 64 bit

number or some other form, since, at a minimum, by adopting a standard SQL data type for the EID the
databases would not have differing syntactic specifications for the same attribute and could make sense
at least of that portion of the data exchanged. If in addition all systems were to adopt a 'publish and
subscribe' approach, then their data also could be available via automated queries based on EIDs from
anywhere within the enterprise. This approach is not so easily implementable in the absence of a
common 'record naming convention', which is the basic characteristic and benefit of using EIDs.
However, it should be clear that a 'publish and subscribe' approach does not prevent the problem alluded
here of 'identifier stove-piping'.

 109

TECHNICAL APPROACHES TO AVOID IDENTIFIER STOVE-PIPING WHEN

POPULATING EIDS INTRODUCED INTO A LEGACY DATABASE

Because identifier stove-piping is something that ought to be avoided whenever possible,
the following sections will explore the potential of some techniques for automating the
insertion of EID values into legacy systems. The discussion will assume that
'authoritative data sources' are available and that the participating information systems
want to take advantage of these resources to integrate their services.

Migrate EIDs into
Legacy System

EID Migration
Policies & Strategies

Transaction
Logs During

Migration Process

Autoritative
Database

(EID Source)

Offline Copy
of

Key Migration
Target

(Legacy DB)

Re-Keyed
Legacy

DB

Figure A-36. A Process Context for Migrating EIDs into Legacy Databases

Figure A-36 schematically depicts the generic process that would be involved in the
assignment of EID values to records resident in a legacy database. This assumes that
these values match those of a pertinent authoritative data source, and, therefore, that they
ought to use the same EID values for its records. Under this scenario, an offline copy of
the legacy database, containing entities targeted to use EID values from an authoritative
data source, would have to be matched to the appropriate entities from said authoritative
data source to create a re-keyed version of the legacy database. Such a process is feasible
if the targeted entities could be semantically associated with some corresponding entities
in the authoritative database. In that case, a human (or an algorithm) could associate each
record in the legacy table with a record in a source table. For each successful match, the

 110

value in the EID field of the authoritative data source would then be copied into the EID
field of the legacy table.

The nature and extent of the processing involved depends on the desired role of the EIDs.
The most complex level of processing would occur in a scenario where EIDs were to be
installed as a new set of primary keys. In this case, the re-keyed database would first
copy the EID values, resulting from record-by-record matches from authoritative data
source, into the associated records of the target entities. Next, the EIDs would be
propagated from the independent entities to the dependent entities. Then, the existing
queries and user interfaces would be updated to reflect the new primary keys. Finally,
the updated target database would be resynchronized with the on-line version to reflect
transactions which occurred during the migration process, and brought on-line.

Figure A-35 shows, in addition to the inputs and outputs, a control input based on
policies and strategies. These include the issue of which legacy entities will be targeted
to receive EIDs. For instance, should the migration strategy be a phased migration in
which only a few entities are targeted for migration at a time? If so, then before
commencement of the next migration phase, the legacy system would be returned to
operational status for a period of evaluation to better manage the risk associated with
changes to the key structure. This migration strategy would avoid a change that could
affect a large number of tables simultaneously.

The migration policies and strategies may also include a policy that ensures data
confidentiality by preventing the targeting of certain tables in a given legacy system.76
Another policy might establish a maximum allowable rate of incorrect EID assignments.
This policy would recognize that human and automated EID assignments might not
always be correct. Therefore, one should put in place standards that prevent the re-
keying of target entities which have poor alignment with the data source.

For the purpose of this analysis of how to incorporate EID values from authoritative data
sources into a particular legacy system, we will concentrate on the three major
components of EID migration: (1) importing EIDs into a single independent entity; (2)
propagating EIDs across parent-child relationships and supertype-subtype hierarchies as
an alternate key; and (3) converting alternate keys into primary keys.

These tasks are interrelated since those activities involved in importing the EID values
support (or are required by) the tasks of propagating them to the child entities and of
promoting alternate keys to primary keys. In the following discussion, we will consider
scenarios which illustrate the technical approach to executing these tasks.

76 Personnel data likely would have to be managed in a way that complies with federal regulations,

specially, if it contains medical information that may fall under regulations such as the Health Insurance
Portability Act (HIPA).

 111

COMPONENT 1. IMPORTING EIDS INTO A SINGLE INDEPENDENT ENTITY
The task of assigning an EID value from an authoritative data source record to a record in
a legacy database is based on a semantic match between the two. The basic assumption
is that the two records share some semantic commonality, i.e., they both pertain to the
same business object, such as PERSON, ORGANIZATION, etc. Clearly, the more
commonality in the naming convention, the easier it is to automate the process. For
example, if the authoritative data source contains a table named ORGANIZATION but the
legacy system has instead a table called AGENCY, then a certain level of preprocessing
will have to be performed before the record matching can begin. In other words, one
must train the application or the human operator to recognize that, at the semantic level,
the ORGANIZATION table in the authoritative data source and the table AGENCY in the
legacy system are to be treated as equivalent.

What has been said above about entities applies with equal force at the attribute level. If
both the authoritative data source and the legacy database contain the attribute NAME for
their respective entities, then algorithms that test whether the value of ORGANIZATION-
NAME is the same as the value of AGENCY-NAME can be exploited to build automated
record matching procedures. Of course, similarity in the name of an attribute is not a
guarantee that the attribute is in fact capturing the same kind of data. A business rule in
the legacy system may actually dictate that the values to be stored in AGENCY-NAME are
actually the internally created short names for agencies, and that the common name of the
agency is to be tracked through the field AGENCY-LONGNAME. The previous remarks
should suffice to show that there is a need to carry out a substantial amount of data
analysis prior to the implementation of any procedures for loading the EID values from
an authoritative data source into a legacy system.

In what follows, it will be assumed that in fact the entities and attributes of the respective
authoritative data source and legacy database do line up semantically. If this is the case,
then the question becomes whether one can decide with a sufficient degree of certainty
that a match in the values of one or more fields between a legacy database record and a
record in the authoritative data source warrants the assignment of the same EID value to
both records.

Clearly, this kind of problem is bounded in that if no value of a given record in the legacy
system matches any value of any record in the authoritative data source, then there is no
reason to assign an EID value from the authoritative data source to that record in the
legacy system. By the same token, if all the values of a given record in the legacy system
match all the values of a record in the authoritative data source, then there is almost
certainty that the two records are semantically identical. Therefore, the record in the
legacy system should be assigned the same EID value used by the record in the
authoritative data source.

The preceding paragraph raises the issue of whether something less than a complete
match of all the values of a pair of records can be used as effectively for EID assignment

 112

as the complete match. There are two implications: (1) the processing cost associated
with an exhaustive match and (2) the impact that erroneously assigned EID values may
have om the usefulness of the EID as a means for integrating data across the enterprise.
As was briefly alluded above, policies and strategies may minimize the effects mentioned
under (2) above, by, for example, adopting EIDs piecemeal and instituting data quality
procedures to ensure that no data corruption is being created when using the EID values.

It should be clear that adopting a complete match approach does not necessarily avoid all
types of errors. It simply ensures that the same EID value will be assigned to a record in
the legacy system that looks exactly like one in the authoritative data source. Data entry
errors either in the authoritative data source or in the legacy system will not be detected
through these kinds of procedures. For example, the authoritative data source contains a
record in the PERSON table with values for PERSON-NAME = 'John K. Morrissette',
PERSON-BIRTH-DATE= '01-12-70'.Likewise, the legacy system has in its
INDIVIDUAL table a record with values INDIVIDUAL-NAME = 'John K.

Morrissette', INDIVIDUAL-DOB = '01-12-70'. However, the actual date of birth
of the person in the legacy system is '01-21-70'. The error, a transposition
of digits for the day, occurred at the time the record was created. Absent any other
information, both a human operator and an application will conclude that the two records
are the same, even though in fact they are not.

SQL

EID
Assignments

Globally
Unique ID
Generator

EID’s for
Unmatchable

Target Records

Performance
Of Rule Set

Authoritative
DB

With EIDs

Target
DB

Multiple Queries
Primary Key &
Attributes

EIDs For Matched
Target Records

EID
Migration

Application

Matching
Rules

Generator

Sample Training
Data

Converting
Rules to
SQL &

Performance
Testing

1

2

3
4

5

6
7

8

9

10

Figure A-37. Procedure for Automating EIDs Insertion into Legacy Databases

 113

In addition, missing data in one of the fields of the record of the legacy system may
trigger a rejection of a possible match even if all the other fields match those of a record
in the authoritative data source.

Preliminary assessments, conducted by the IDA team that conducted this analysis, seem
to indicate that acceptable procedures that require less than complete matches of all the
values of a record can in fact be implemented. Such procedures minimize the risk of
improperly assigning a given record to the EID value of a corresponding record in the
authoritative data source.

Figure A-37 above shows a semi-automated approach for carrying out EID insertions into
legacy systems. The steps needed are as follows: (1) A small sample of data is extracted
from the target DB and is manually matched against the authoritative database to create a
training set. (2) This training set is then used to create—either manually of using
machine learning technology—a set of matching rules. (3) These rules are then
converted into the equivalent SQL commands which simultaneously reference both
legacy and data source tables. These are then tested for accuracy and performance. (4)
Any issues, which arise from this testing, can be addressed by making the appropriate
modifications to the matching rules. (5) At this point, the SQL is loaded into an
application which drives the large-scale processing of legacy tables.

When large-scale processing occurs, the following steps are added: (6) The Migration
application, via the RDBMS query engine (not shown), executes each SQL query
representing a matching rule. The query execution involves the examination of
LegacyRecords; and (7) the examination of DataSource records. The result of the query
is the EID value, which is extracted from the DataSource (step 8). The Migration
application then identifies ambiguous EID assignments from the query (i.e. two or more
EIDs for a single legacy record), which it eliminates. The Migration application then
determines which legacy records have not been assigned EIDs. The application will then
request and receive newly minted EIDs from the globally unique EID generator, (step 9).
Finally (step 10), it writes all the EIDs obtained from this process into the records of the
target DB.

As the above discussion makes clear, the construction of a high quality set of matching
rules is the critical ingredient which enables the automated insertion of EID values into a
legacy system. This begs the question: what constitutes a high quality set of matching
rules? The simple answer is that (1) the rules must be accurate; and (2) the rules should
not create a performance bottleneck for the matching processor. But each of these
criteria requires some explanation.

First, consider the accuracy of the matching algorithm: Typically, the accuracy of the
rule-set is quantified in terms of two probabilities. The first is P(Match|NoMatch), the
conditional probability that a legacy and a data source record are declared to match by the
rule-set given that in fact no match exists. And the second is P(NoMatch|Match), the
probability that a randomly chosen legacy/data source record pair are not identified as a
match even though they are in fact the same. Finding the most accurate rule-set may not
be a major issue in many EID value insertion projects. However, in those cases where it
is important, there is a fundamental limitation: rule-sets which reduce the rate of

 114

incorrectly matched records will typically increase the rate of missed matches i.e., record
pairs which should have been matched by the rule-set but which weren’t.

The second important feature of a high quality rule-set is that the matching rules do not
adversely impact the performance of the matching algorithm. To understand this issue,
consider the following approach to record matching: Take each of the NL legacy records
and each of the NAuth authoritative data-source records, and test each of the matching
rules to see if a match is to be declared. Although simple, this approach can be
unacceptably slow, if both NL and NAuth are large. In this case, more sophisticated
algorithms must be used for matching records. In many cases, the naïve pair-wise
matching, which takes O(NL NAuth) time, can be replaced with more efficient algorithms
which only takes O(NL) time.

However, this level of performance is not guaranteed. In some instances, changes in the
matching rules, involving trade-offs between error rates, may be required in order to use
the faster algorithms.

To understand this in greater detail, consider the following example: Suppose we have a
comparison function CF(LegacyRecord,SourceRecord), or CF(LR,SR) for short, which
returns a Boolean k-tuple, e.g. (T,T,F,T,…), such that the value of the i-th component is
computed as CF(LR,SR)i =iif(LR.attrib_i = SR.attrib_I, T,F). That is, we will suppose
that CF(LegacyRecord,SourceRecord)i is true if the value of i-th attribute of the legacy
record equals the i-th attribute of the source record. Further, suppose that the matching
rule-set includes (T,T,T,T,*,*,..*), and (T,T,F,T, *,*,…*). The question to be considered
is this: What is the performance of the matching algorithm as it tries to match according
to these two rules? The question is easily answered for the first matching rule: The
algorithm begins by issuing the SQL command

SELECT LegTbl.key, SrcTbl.EID
FROM LegTbl, SrcTbl
WHERE LegTbl.attrib1=SrcTbl.attrib1
AND LegTbl.attrib4=SrcTbl.attrib4;

where LegTbl and SrcTbl denote the legacy and source tables respectively. Provided that
the source table has been indexed on the first four attributes, the execution time will be
proportional to NL, not (NL NAuth). Now consider the second matching rule: In this case,
the SQL command that is issued reads

SELECT LegTbl.key, SrcTbl.EID
FROM LegTbl, SrcTbl
WHERE LegTbl.attrib3 <> SrcTbl.attrib3
AND LegTbl.attrib4=SrcTbl.attrib4;

The execution time for this SELECT SQL command depends critically on the domain size
for attribute #3. Assuming that attrib3 has been chosen as an index, the typical RDBMS

 115

implementation will block the records into groups with a common value for attrib3. If
ND3 is the domain size of attrib3, then there should be ND3 such blocks. In queries
involving attrib3, the RDBMS will execute the query by examining the values of attrib3
block by block, rather than record by record. For this reason, the query execution time
will be proportional to NL (NRet + NB), where NRet is the average number of source
records (which match a randomly chosen legacy record) and where NB is the average
number of blocks aggregated according to attrib3 (with specified values of attrib1,
attrib2, and attrib4). Of course, if the indexing scheme did not block records according
to the value of attrib3, the execution time for the query would be dramatically increased.

However, if NB is very large the performance may still not be satisfactory, and more
sophisticated approaches may be needed.77 Fortunately, a few simple tricks like that
indicated below will usually give a total execution time per matching rule to be O(NL).
However, this can not always be guaranteed. Some of the matching rules may indeed
require an execution time of order NL NAuth to execute. In such cases, the developer may
wish to consider dropping the problematic rule. However, in making such a decision, the
developer will need to balance the tradeoff between increased execution speed and
reduced matching accuracy78.

In some instances, it may be difficult to articulate a high performance set of matching
rules even though the manual assignment of EIDs to individual legacy records is
straightforward. Alternatively, the analyst may wish to replace his intuitively developed
rules with a more accurate or more reliable rule-set. In such instances, EID assignments
can be converted into rule-sets using one of the standard algorithms (Bayesian learning,
Decision tree learning, and neural networks) from machine learning technology.

77 In this case, one might try an alternative query based on a pair of SQL commands:

The first SQL SELECT query would be as follows:

SELECT LegTbl.key, SrcTbl.EID,
 LegTbl.attrib3 AS LegT3,
 SrcTbl.attrib3AS SrcT3 INTO Temp
FROM LegTbl, SrcTbl
WHERE LegTbl.attrib2 = SrcTbl.attrib2
AND LegTbl.attrib4=SrcTbl.attrib4;

The second SQL query would be as follows:

SELECT key, EID from Temp where LegT3 <> SrcT3;

The first query returns NQ1 records in a time proportional to NL . The second query will then process these
records in a time proportional to NL NQ1. This will be an efficient approach provided that NQ1 isn’t too large
(i.e. << NAuth).
78 . These requirements are not expected to create a significant problem in most cases. Indeed, recent record
matching experiments at IDA indicate that one can typically find very satisfactory matching rules which are
devoid of F entries - i.e. one can find a rule of the form (T,T,*,T,*,*,T), which performs as well as rule
sets developed by much more sophisticated methodologies.

 116

Consider the following example of such a machine learning based approach. As a first
step, the rule-set developer would create a comparison function CF(LR,SR) which takes a
legacy record, LR, and a source record, SR, and returns a discretely-valued comparison
pattern.

PERSONNEL

Primary Key
(Legacy)

Name Sex Address EIDs

A15 Smith M 410 Main St
C1 Jones F 213 Pine

G27 Walker M 70 Newark Ave
C107 Santana M 2305 Orange Lane
K11 Smith M 3400 Elm St

Table 1. Notional Legacy Database Table for Personnel Data

PERSON

EID Last Name Gender Street Address
FF063402 Smith F 410 Main St
FF099111 Smith M 410 Main St
FF073409 Walker M 305 Pine
FF062444 Walker M 70 Newark Ave

Table 2. Notional Authoritative Data Source Table for Person Data

In one instance, using Tables 1 and 2 above, we can define a comparison function
CF(LR,SR) which, based on the attribute values of the two records, returns the Boolean 3-
tuple (LR.Name=SR.LastName, LR.Sex=SR.Gender, LR.Address=SR.StreetAddress).
In another instance, if LR was A15 and SR was FF063402, then CF(LR, SR)=(True,False,
True). Similarly, if LR was A15 but SR was FF099111, then CF(LR, SR)=(True, True,
True). In other words, since the returning value of the 3-tuple matches our CF(LR,SR),
we would give the legacy system record identified with A15 the EID value FF099111.

As a second step, the rule-set developer would construct sets of positive and negative
training patterns. The elements of the set of positive training patterns would consist of
rules such as "declare match if CF(LR,SR)=(True, False, True)". Similarly, the negative
training set would consist of rules like “declare no match if
CF(LR,SR)=(True,True,False)”. The goal of machine learning algorithms is to
inductively generalize the sets of comparison patterns to produce a decision function
DF(CP), which is defined for all possible values of the comparison pattern CP. The
decision function DF(CP) would then be used as the set of matching rules.

 117

COMPONENT 2. PROPAGATING EIDs AS FOREIGN KEYS
THROUGHOUT THE TARGET DATABASE
In the previous discussion, we described a system that was suitable for inserting EIDs
into (one or more) targeted independent entities of a legacy system. This level of
migration had, in effect, ported the EID values into the data area of the independent
attribute. However, the EID could not support either parent-child relationships or
supertype/subtype hierarchies, since, in this scenario, the EIDs were not propagated as
foreign-keys. This, in turn, would mean that queries based solely on EIDs would not be
able to reach into the database beyond the independent entities.

To address this problem, we will consider a scenario that demonstrates how to propagate
the EIDs as foreign keys throughout the legacy system. This will require that that the
migration algorithm assigns EIDs to all dependent entities, subtypes, children, and
associative entities. The first step of the migration process is to insert EIDs into all the
targeted independent entities of the legacy system, using the methods described in the
previous section. The next step is to organize the entities of the target database into a set
of entity trees where the independent entities are the roots of the tree, and associative-
entities, childless entities, as well as entities not belonging to a hierarchy are the leaves.

The migration algorithm, Sub MigrationDriver, shown below, shows a high-level
procedure for how to accomplish such EID value assignments throughout the entire
legacy database. The algorithm begins by looking at each table (identified here as the
parent table) corresponding to a targeted independent entity. For each such parent table,
it proceeds—record by record—to retrieve the appropriate EID values and to insert them
into the corresponding records of children, subtypes and other descendant entities of the
legacy system (using MigrateToChildren) associated with the ParentTable record. (Note:
Entities are considered to be descendant of a ParentTable if they belong in the branch of
the entity tree rooted at the ParentTable.)

 118

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ The Sub MigrationDriver algorithm ‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ ‘

This algorithm recursively propagates the EIDs, starting from the top of
each entity tree (i.e. an independent entity) , through all descendants, down
to the leaves of the tree. (The leaves are childless tables and association
entities contained in the legacy database). The input is the Legacy database
tables (collected in LegacyDB) and the authoritative data source, which is
called DataSource.

Sub MigrationDriver(LegacyDB, DataSource)
In the top-level (“For Each”) loop, the LegacyDB is a “collection object” which
contains all the tables of the legacy database.
For Each Table in LegacyDB
 ParentTable=Table

In the next statement, we assume a function exists that knows which tables are
targeted independent entities (TIE). No attempt is made to process non-TIE
tables

 IF IsTargetedIndependentEntity(ParentTable) Then
We Process the ParentTable record-by-record
 For Each Record in ParentTable.records
First we recover Legacy-key value for the record being processed
The syntax record.LegacyKey assumes the existence of a class “Record”
such that record.LegacyKey returns the value of the Legacy key.
 EIDValue=GetEID(record.LegacyKey,ParentTable, DataSource)
Then we assume some subroutine AddAttribute will the EID value into
into the EID field (which we assume exists.)
 Call AddAttribute(EIDValue, record)
Then we recursively process “related” records in the descendant tables i.e. tables
which are children/subtypes of ParentTable. A record in a descendant table is said to
be related to a record in the Parent table if the value of the foreign-key is the same
as the value of LegacyKey of the record in the said ParentTable.
 Call MigrateToChildren(EIDValue, record.LegacyKey, ParentTable)
Note: The sub MigrateToChildren –defined below – is able to identify the
and process the descendants of ParentTable.
 Next Record
 End IF
Next Table ‘And we repeat all of the above processing on each of the TIEs.

End Sub
Note: Declaration of variables, objects, and ‘collections not ‘given.

Note that we assume in Sub MigrationDriver the existence of various subroutines and
functions. The most important of these is a function called GetEID(LegacyKeyValue
,ParentTable, DataSource), which takes a record from the ParentTable specified by its
LegacyKeyValue, identifies the corresponding record in the database DataSource and, if
the match is correct according to the rule-set, then returns the EID found from the said
DataSource record. Another important routine used by Sub MigrationDriver is Sub

 119

MigrateToChildren, which recursively assigns EIDs to entities throughout the target
database. The pseudo-code for MigrateToChildren is presented below. The remaining
functions and subroutines are utilities which perform miscellaneous tasks such as writing
EIDs into a specified record or deciding which tables should receive EIDs. The role of
these utilities is documented in Table 3.

Function ChildrenOfEntity(EID,
LegacyKey, TableName)

For a record of table “TableName” with
specified LegacyKey value, returns a
collection of associated records of
Entities which are children of TableName

Function TerminateMigration(TableName) Returns True of False depending on
whether migration strategy dictates that
EID should be propagated to
children/subtypes of table TableName

Sub AddAttribute(EIDValue, record) A subroutine which writes the EIDValue
into the EID field of a specified record

Function
IsTargetedIndependentEntity(Table)

Returns True or false depending on
whether Table implements a Targeted
Independent Entity in the Legacy DB

Function
GetEID(LegacyKeyValue,Table,DatSource)

Returns the EID associated with the
record in the specified legacy table with
the specified value of the
LegacyKeyValue. Uses the user
developed ruleset to search for the EID
in the data source DB

recordObj.LegacyKey The Value of the Primary key of the
specified Record object called
“recordObj”

TableObj.TableName and
TableObj.Records

The tableName and the collection of
records contained in the Table object
“TableObj”.

Table 3. Definitions of the Functions, Subroutines, and Class Methods used in the
“MigrateToChildren” and “MigrationDriver” algorithms presented below.

We should also mention that the pseudo-code presented here assumes the existence of
several classes. These classes are Tables and Records. A table object contains a
collection of records (denoted as tableObj.records), and a variable which records the
tables name (denoted tableObj.TableName). An object of class Record contains all the
data of that record, including the LegacyKey, which is denoted recordObj.LegacyKey .
Finally, we should mention that there are various collections of table objects (including
LegacyDB, children, DataSource) and record objects (such as ParentTable.records),
which are used in MigrationDriver and MigrateToChildren.

 120

‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ The MigrateToChildren algorithm ‘’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ ‘
‘This algorithm recursively writes the value of the variable “EIDValue” into all records
‘with foreign-key value=target in all tables which descent from ParentTable. A
‘descendent of ParentTable is any table which, by an unbroken chain of relationships
‘(parent/child or supertype/subtype), is connected to ParentTable.

Sub MigrateToChildren(EIDValue, target, ParentTable)
‘We assume a function TermiunateMigration knows the DB owners policies on which
‘tables the EID propagation should stop.
 If Not TerminateMigration(ParentTable) then
 Children=ChildrenOfEntity(ParentTable)
 ‘Children is a collection of legacyDB tables that are children of ParentTable

For each child in Children ‘child runs over each of the tables in
Children

‘We then process the records of child, record-by-record
For each record in child.records

‘Next we check if the ForeignKey Value in the current record matches ‘the specified
target (i.e. the value of the LegacyKey of record in the parent record currently being
processed by MigrationDriver)

 If record.LegacyKey_FK= target then
‘If so write the EIDValue into the EID field of the current record (of child)
 Call AddAttribute(EIDValue, record)
 End If
 Next Record ‘Do the above for all of child’s records

‘Having processed all the records of child, we then (recursively) migrate EIDs to ‘all the
descendent tables of child

 Call MigrateToChildren(EIDValue, target , child.TableName)
Next child ‘We repeat all the above for each child of ParentTable
End If
 ‘All the children of ParentTable have been processed,
 ‘Return control to subroutine MigrationDriver
Return
End Sub

COMPONENT 3. CONVERTING ALTERNATE KEYS INTO PRIMARY
KEYS
The previous discussion of procedures for inserting EID values into legacy systems and
using them as alternate keys, can, with minor modifications, be extended to the case
where one would like to use the inserted EIDs as primary keys. The basic procedure is
depicted in Figure A-38 below and runs as follows. We take the DB offline and migrate
the EIDs as alternate keys to all the target independent entities and their descendent entity
trees, using the approach described above. Then we export all tables into a second copy
of the DB, with the EIDs now promoted to primary keys for all affected entities. Finally,
we rebuild all the relations and linkages between tables. This is done recursively starting
from the roots of the entity trees (the independent entities) and descending down to the
childless entities which constitute the leaves.

 121

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01

DB01_TblD_ChildOfTblA

DB01_TblA_Key (FK)
DB01_TblD_ChildOfTblA_Index

DB01_TblA

DB01_TblA_Key

DB01_TblA_Attr01

DB01_TblD_ChildOfTblA

DB01_TblA_Key (FK)
DB01_TblD_ChildOfTblA_Index

DB01_TblA

DB01_TblA_Key
DB01_TblA_Attr01

DB01_TblD_ChildOfTblA

DB01_TblD_ChildOfTblA_Index

DB01_TblA_key

DB01_TblA

DB01_TblA_Key
DB01_TblA_Attr01

DB01_TblD_ChildOfTblA

DB01_TblD_ChildOfTblA_Index

EID

EID

EID

EID

EID

EID (FK)

Step #2:
Promote EIDs

To Primary Keys

Step #1:
Migrate EIDs
as Alternate

Keys

Step #3:
Rebuild

Relationships

Figure A-38. Steps for EIDs Insertion as Primary Keys into Legacy Databases

The preceding analyses describe the basic components for the insertion of EID values
into legacy information systems. The reader should keep in mind that in addition to

 122

 123

modifying the data itself, a change in primary keys will require the database owner to
update the stored procedures for such queries. Depending on how the queries were
written and managed, this may not be too time consuming since the new EID keys are in
one-to-one correspondence with the legacy keys. In addition, the owner of the legacy
database may need to devise a mechanism for transforming transaction logs, generated by
the on-line copy of the legacy system, into a form that can be used to synchronize the re-
keyed database. Finally, he may wish to update the user interface to take advantage of
the relationships, implied by the EIDs, which now exist between his database and
authoritative data-sources.

	Introduction
	Background – Progress Since the Logistics Study
	A Short Review of Organization Identifiers and Hierarchical Structures

	Lessons Learned Since The Logistics Study
	Decoupling Enterprise Identifiers (EIDs) From Organization Identifiers (Org-IDs)
	EID Server Architectures
	EID Seed Servers (ESS)
	EID Servers
	EID Server Location Flexibility

	EIDs as Alternate Keys
	Application Of The EID Concept To Reference Libraries
	Data Ownership, Authoritative Sources, and Duplication
	User Access To EID Servers
	Choice Of Optimal Taxonomies
	Benefit To The Warfighter
	Benefits To Database Evolution And Managing Change

	PERSONNEL ONTOLOGY AND MODELING ISSUES
	Basic Entities in Battle Command System Models
	Personnel Data in the Context of Battle Command Systems Data Models
	Organization [ORG]
	Organization-Type [ORGT]
	Person [PERS].
	Person-Type [PERST] and Skill-Type [SKILLT]
	Attributes for PERST and SKILLT
	Modeling Options for Personnel Attributes
	Using EIDs to Add Flexibility to Associations

	RECOMMENDATIONS AND SUMMARY.
	Recommendation 1: Incorporate EIDs into personnel automated information systems as alternate keys.
	Recommendation 2: To facilitate interoperability
	Recommendation 3: Implement EIDs as 64-bit sequences, or alternatively, as 16 characters using hexadecimal representation, building them as the concatenation of a global EID prefix and a locally generated EID suffix.
	Recommendation 4: Establish an initial interface between administrative and battle command systems for personnel data via the Army Organization Server (AOS).
	Recommendation 5: Make PERSCOM the authoritative source for Army person-type data maintained in the AOS, and develop automated procedures for loading the EID values into legacy systems planning to line up their data with the authoritative source.
	Recommendation 6: To facilitate inter-service exchange, model personnel data in the AOS using both bundled and generic attributes similar to a meta-model. The bundled skill-type option is recommended.

	Annex A��Analysis of Options for�EID Implementations
	Preface
	I. Basic Concepts And Definitions
	A. DEFINITION OF ENTITIES, ATTRIBUTES AND RELATIONSHIPS
	B. DATA MODELING NOTATION

	II. Technical Alternative Analysis
	A. TECHNICAL ALTERNATIVES FOR THE EID STRUCTURE

